MSTM 6033 — Fall — 2004
Teachers College — Columbia University
Assignment # 2 — September 24, 2004

Name: __

Signature: ___

1. Problem 18, §1.3 — Let \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \), \(\mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \\ 8 \end{bmatrix} \), \(\mathbf{y} = \begin{bmatrix} h \\ -5 \\ -3 \end{bmatrix} \). For what value(s) of \(h \) is \(\mathbf{y} \) in the plane generated by \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \)?

Solution: All linear combinations of \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) will span the plane that includes these two vectors, if we want to find the linear combination of \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) that produces \(\mathbf{y} \), we will need to solve \(a \mathbf{v}_1 + b \mathbf{v}_2 = \mathbf{y} \). In matrix form:

\[
\begin{bmatrix}
1 & -3 \\
0 & 1 \\
-2 & 8
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix}
=
\begin{bmatrix}
h \\
-5 \\
-3
\end{bmatrix}
\]

which can be thought of as a simple system of linear equations:

\[
\begin{align*}
a - 3b &= h \\
b &= -5 \\
-2a + 8b &= -3
\end{align*}
\]

Where the solution for \(b \) can be obtained by inspection, \(b = -5 \). Substituting \(b = -5 \) into
\(-2a + 8b = -3\) yields a solution for \(a \), where \(a = -\frac{37}{2} \). Finally, substituting \(b = -5 \) and
\(a = -\frac{37}{2} \) into \(a - 3b = h \), gives the value of \(h = -\frac{7}{2} \).

2. Problem 1, §1.4 — Compute the product, using (a) the definition, as in Example 1, and (b) the row-vector rule for computing \(\mathbf{A}\mathbf{x} \). If the product is undefined, explain why.

\[
\begin{bmatrix}
-4 & 2 \\
1 & 6 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
3 \\
-2 \\
7
\end{bmatrix}
\]

Solution: The product is not defined. We would need another column of \(\mathbf{A} \), or one less.
row of \(\mathbf{b} \). The number columns in \(A \) must match the number of rows in \(B \) for the product \(AB \) to be defined.

3. Problem 12, §1.4 — Write the augmented matrix for the linear system that corresponds to the matrix equation \(A\mathbf{x} = \mathbf{b} \). Then solve the system and write the solution as a vector.

\[
A = \begin{bmatrix}
1 & 2 & 1 \\
-3 & -1 & 2 \\
0 & 5 & 3
\end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix}
0 \\
1 \\
-1
\end{bmatrix}
\]

Solution: Augmented matrix form of these matrices is:

\[
\begin{bmatrix}
1 & 2 & 1 & 0 \\
-3 & -1 & 2 & 1 \\
0 & 5 & 3 & -1
\end{bmatrix}
\]

Elementary row operations, in order given:

\[
3R_1 + R_2 \rightarrow R_2 \\
-R_2 + R_3 \rightarrow R_3 \\
-\frac{1}{2}R_3 \rightarrow R_3
\]

Produces:

\[
\begin{bmatrix}
1 & 2 & 1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 5 & 3 & -1
\end{bmatrix} \sim \begin{bmatrix}
1 & 2 & 1 & 0 \\
0 & 5 & 3 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}
\]

Simple back-substitution gives the solution: \(x_3 = 1 \), \(x_2 = -\frac{4}{5} \) and \(x_1 = \frac{3}{5} \). In vector form, the solution is:

\[
\begin{bmatrix}
3 \\
-4 \\
5
\end{bmatrix}
\]

4. Problem 13, §1.4 — Let \(\mathbf{u} = \begin{bmatrix} 0 \\ 4 \end{bmatrix} \), \(A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix} \). Is \(\mathbf{u} \) in the plane in \(\mathbb{R}^3 \) spanned by the columns of \(A \)? Why or why not?

Solution: The columns of \(A \) are linearly independent in \(\mathbb{R}^3 \) and span a plane in this space. To see if \(\mathbf{u} \) is in the span of \(A \), that is a linear combination of the columns of \(A \), Solve

\[
x_1 \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -5 \\ 6 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix},
\]

for \(x_1 \) and \(x_2 \). Using simple matrix algebra yields a solution \(x_1 = \frac{5}{2} \) and \(x_2 = \frac{3}{2} \). Therefore \(\mathbf{u} \) is in the plane spanned by the column space of \(A \).
5. Problem 15, §1.4 — Let $A = \begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix}$ and $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Show that the equation $Ax = b$ does not have a solution for all possible b, and describe the set of all b for which $Ax = b$ does have a solution.

Solution: Augmented matrix form of $Ax = b$ is:

\[
\begin{bmatrix}
2 & -1 & | & b_1 \\
-6 & 3 & | & b_2
\end{bmatrix}
\]

Elementary row operations produces:

\[
\begin{bmatrix}
2 & -1 & | & b_1 \\
0 & 0 & | & 3b_1 + b_2
\end{bmatrix}
\]

The system has a solution when $3b_1 + b_2 = 0$ only, so a solution only exists when $b_2 = -3b_1$. In vector form $x = \begin{bmatrix} b_1 + k \\ 2k \end{bmatrix}$, where $k \in \mathbb{R}$.

6. Problem 34, §1.4 — Suppose A is a 3×3 matrix and b is a vector in \mathbb{R}^3 with the property that $Ax = b$ has a unique solution. Explain why the columns of A must span \mathbb{R}^3.

Solution: Using the following:

Theorem2: Let A be an $n \times n$ matrix. Then the following statements are equivalent.

(a) The columns of A form a basis for \mathbb{R}^n.
(b) The equation $Ax = b$ has a unique solution for every $b \in \mathbb{R}^n$.
(c) A is an invertible matrix.
(d) The determinant of A is nonzero.
(e) A is row equivalent to the identity matrix.

We are told that $Ax = b$ has a unique solution which is entry (b) in the above theorem. Therefore, statement (a) is implied. Of course, if we have a basis for \mathbb{R}^3, the column space spans \mathbb{R}^3. Q.E.D.
