MTH 121 — Fall — 2004 Essex County College — Division of Mathematics Test $\# 2^1$ — Created December 6, 2004

Name: _____

Signature:

Show all work *clearly* and in *order*, and box your final answers. Justify your answers algebraically whenever possible. You have at most 80 minutes to take this 100 point exam. No cellular phones allowed.

1. (10 points) — Find the absolute maximum and minimum values of the function $f(x) = x^3 - 3x^2 + 1$ on the interval $-\frac{1}{2} \le x \le 4$.

Solution: Using the Closed Interval Method.

- (a) Find the values of f(x) at the critical numbers of f(x) in the open interval $\left(-\frac{1}{2},4\right)$. Since $f'(x) = 3x^2 - 6x$ the critical numbers are x = 0 and x = 2. Evaluating f(0) = 1 and f(2) = -3.
- (b) Find the values of f(x) at the endpoints of the closed interval $\left[-\frac{1}{2}, 4\right]$. Evaluating $f\left(-\frac{1}{2}\right) = \frac{1}{8}$ and f(4) = 17.
- (c) The largest value of f(x) from the above two steps is the absolute maximum value; the smallest these values is the absolute minimum.

Answer: The absolute maximum is: f(4) = 17; and the absolute minimum is f(2) = -3.

2. (15 points) — Given $f(x) = x^2 + 5x + 9$, verify the following:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{8}{n} \cdot f\left(-3 + \frac{8i}{n} \right) \right] = \frac{488}{3}$$

Solution: First evaluate $f\left(-3+\frac{8i}{n}\right)$.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{8}{n} \cdot f\left(-3 + \frac{8i}{n} \right) \right] = \lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{8}{n} \cdot \left(\frac{64i^2 - 8ni + 3n^2}{n^2} \right) \right]$$

Next, simplify the summand.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{8}{n} \cdot \left(\frac{64i^2 - 8ni + 3n^2}{n^2} \right) \right] = \lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{512}{n^3} \cdot i^2 - \frac{64}{n^2} \cdot i + \frac{24}{n} \right]$$

¹This document was prepared by Ron Bannon using LATEX.

Next, evaluate the sum.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{512}{n^3} \cdot i^2 - \frac{64}{n^2} \cdot i + \frac{24}{n} \right] = \lim_{n \to \infty} \left[\frac{512}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} - \frac{64}{n^2} \cdot \frac{n(n+1)}{2} + \frac{24}{n} \cdot n \right]$$

Next, simplify and evaluate the limit.

$$\lim_{n \to \infty} \left[\frac{256}{3} \left(2 + \frac{3}{n} + \frac{1}{n^2} \right) - 32 \left(1 + \frac{1}{n} \right) + 24 \right] = \frac{256}{3} \cdot 2 - 32 + 24 = \frac{488}{3}$$

Q.E.D.

3. (15 points) — A cylindrical can is to be made to hold one liter of oil. Find the dimension that will minimize the cost of the metal to manufacture the can.²

Solution: The cost, assuming the can's top, bottom, and side are made from the same material, is equivalent to minimizing the surface area. The can's surface area is:

$$S = 2\pi r^2 + 2\pi r h$$

Unfortunately there's two variables and we to find a relationship to rewrite S in terms of either r or h only. Using $V = 1,000 = \pi r^2 h$, and solving for $h = \frac{1,000}{\pi r^2}$, then substituting into $S = 2\pi r^2 + 2\pi r h$, yields:

$$S(r) = 2\pi r^{2} + 2\pi r \left(\frac{1,000}{\pi r^{2}}\right) = 2\pi r^{2} + 2,000r^{-1}$$

The variable r is contained on the open interval $(0, \infty)$, and we just need to find the critical numbers by taking the derivative of S(r), and solving S'(r) = 0 or S'(r) = DNE.

$$S'(r) = 4\pi r - 2,000r^{-2}$$

There's only one critical number contained in the open interval $(0, \infty)$, $r = \sqrt[3]{\frac{500}{\pi}}$. Where S'(r) < 0 for $r < \sqrt[3]{\frac{500}{\pi}}$ and S'(r) > 0 for $r > \sqrt[3]{\frac{500}{\pi}}$. Hence, $r = \sqrt[3]{\frac{500}{\pi}}$ minimizes S(r). To find h, just substitute $r = \sqrt[3]{\frac{500}{\pi}}$ into $h = \frac{1,000}{\pi r^2}$ and simplify.

$$h = \frac{1,000}{\pi} \left(\sqrt[3]{\frac{\pi}{500}}\right)^2 = 10\sqrt[3]{\frac{4}{\pi}}$$

So, the dimensions are:

•
$$r = \sqrt[3]{\frac{500}{\pi}} = 5\sqrt[3]{\frac{4}{\pi}} \approx 5.42$$
 centimeters, and
• $h = 10\sqrt[3]{\frac{4}{\pi}} \approx 10.84$ centimeters.

²You'll need to find the radius and height. Formulas that might be helpful: volume of a cylinder is given by $V = \pi r^2 h$; circumference of a circle is given by $C = 2\pi r$; area of a circle is given by $A_c = \pi r^2$; and area of a rectangle is given by $A_r = lw$. You should also be aware that $1 L = 1,000 \text{ cm}^3$.

4. (10 points) — Find f(x) if $f''(x) = 2 + \cos x$, f(0) = -1, and $f(\frac{\pi}{2}) = 0$. Solution:

$$f'(x) = 2x + \sin x + C_1$$

 $f(x) = x^2 - \cos x + C_1 x + C_2$

Using f(0) = -1 to solve for C_2 .

$$f(0) = 0^{2} - \cos 0 + C_{1}0 + C_{2} = -1$$

-1 + C₂ = -1
C₂ = 0

Using $f\left(\frac{\pi}{2}\right) = 0$, $C_2 = 0$ to solve for C_1 .

$$f\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2}\right)^2 - \cos\left(\frac{\pi}{2}\right) + C_1\left(\frac{\pi}{2}\right) = 0$$
$$\frac{\pi^2}{4} + C_1\left(\frac{\pi}{2}\right) = 0$$
$$C_1\left(\frac{\pi}{2}\right) = -\frac{\pi^2}{4}$$
$$C_1 = -\frac{2}{\pi} \cdot \frac{\pi^2}{4}$$
$$C_1 = -\frac{\pi}{2}$$
So, $f(x) = x^2 - \cos x - \frac{\pi}{2}x$.

5. (50 points total) — Given:

$$f(x) = \frac{x^2 + 7x + 3}{x^2} = 1 + \frac{7}{x} + \frac{3}{x^2}$$
$$f'(x) = -\frac{7x + 6}{x^3}$$
$$f''(x) = \frac{14x + 18}{x^4}$$

Answer the following questions.

(a) (6 points) — x-intercept(s): Answer:
$$\left[\left(\frac{-7-\sqrt{37}}{2},0\right);\left(\frac{-7+\sqrt{37}}{2},0\right)\right]$$

(b) (3 points) — y-intercept(s): Answer: none
(c) (3 points) — vertical asymptote(s): Answer: $x=0$
(d) (4 points) — horizontal asymptote(s): Answer: $y=1$
(e) (4 points) — domain: Answer: $\mathbb{R}, x \neq 0$

- (f) (5 points) range: Answer: $\left[-\frac{37}{12},\infty\right)$
- (g) (4 points) local maximum(s): Answer: none
- (h) (5 points) local minimum(s): Answer: $(-\frac{6}{7}, -\frac{37}{12})$
- (i) (4 points) global maximum(s): Answer: none
- (j) (5 points) global minimum(s): Answer: $\left(-\frac{6}{7}, -\frac{37}{12}\right)$
- (k) (7 points) point(s) of inflection: Answer: $\left[\left(-\frac{9}{7}, -\frac{71}{27}\right)\right]$