Exercise Four: Set Notation, Greek and Hebrew Letters If $A = \{\heartsuit, \clubsuit\}$ and $B = \{\epsilon, \theta\}$, then $A \cup B = \{\heartsuit, \clubsuit, \epsilon, \theta\}$ $A \cap B = \emptyset$ $\mathcal{P}(A \cap B) = \{\emptyset\}$

Theorem 1. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof. We assume $A \subseteq B$ and $B \subseteq C$, and we want to show $A \subseteq C$. Suppose $x \in A$. We must show that $x \in C$ also. Since $A \subseteq B$, we know $x \in B$. Similarly, since $B \subseteq C$, we also know $x \in C$. But this means $A \subseteq C$, as desired.

Theorem 2. If $A \subseteq B$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Proof. We assume $A \subseteq B$, and we want to show $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Suppose $X \in \mathcal{P}(A)$. We must show $X \in \mathcal{P}(B)$ also. By the definition of power set, $X \in \mathcal{P}(A)$ means that X is a subset of A. Since $X \subseteq A$ and $A \subseteq B$, the previous theorem tells us that $X \subseteq B$ also. Then, using the definition of power set again, this means $X \in \mathcal{P}(B)$. Therefore, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, as desired.

Puzzling Power Sets

 $\begin{aligned} \mathcal{P}(\emptyset) &= \{\emptyset\} \\ \mathcal{P}(\mathcal{P}(\emptyset)) &= \{\emptyset, \{\emptyset\}\} \\ \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) &= \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\{\emptyset\}\}\} \end{aligned}$