Exercise Nine: Arrows and Functions

Definition. A function \(f : A \to B \) is bijective or a one-to-one correspondence if and only if \(f \) is injective and surjective.

Notation. If \(f \) is a bijection, we write \(f : A \xrightarrow{1-1} \text{onto} B \).

Claim 1. The function \(f : \mathbb{R} \to \mathbb{R}^+ \) given by \(f(x) = x^4 + 1 \) is not injective.

Proof. We must show that there exist \(a_1, a_2 \in \mathbb{R} \) such that \(f(a_1) = f(a_2) \) but \(a_1 \neq a_2 \).

Choose \(a_1 = 1 \) and \(a_2 = -1 \).

Then \(f(a_1) = 2 \) and \(f(a_2) = 2 \) but \(a_1 \neq a_2 \), so \(f \) is not injective. \(\square \)

Claim 2. The function \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = 3x + 1 \) is surjective.

Proof. We must show that for every \(b \in \mathbb{R} \) [the codomain] there exists \(a \in \mathbb{R} \) [the domain] such that \(f(a) = b \).

Pick any \(b \in \mathbb{R} \).

Let \(a = (b - 1)/3 \).

Since \(b \in \mathbb{R} \) and because the reals are closed under subtraction and non-zero division, we know that \((b - 1)/3 \in \mathbb{R} \), i.e., \(a \) is in the domain of \(f \).

Furthermore,

\[
\begin{align*}
f(a) &= f \left(\frac{b - 1}{3} \right) \\
&= 3 \cdot \frac{b - 1}{3} + 1 \\
&= b - 1 + 1 \\
&= b
\end{align*}
\]

as desired. \(\square \)