Essex County College - Division of Mathematics and Physics ${ }^{1}$

Lecture Notes \#7- Sakai Web Project Material

1 Trigonometric Substitutions, §7.3

In this section of the textbook we will be presented with difficult integrands that contain a function of x that looks like:

$$
\sqrt{a^{2}-x^{2}}, \quad \sqrt{a^{2}+x^{2}}, \quad \sqrt{x^{2}-a^{2}} .
$$

In general we will be looking to make a substitution, but in these cases our substitution will be another function with another parameter. To make our calculations simpler, we need to make these new functions invertible, that is, they should be one-to-one. For example, here we're using a new invertible function $g(\theta)$ to rewrite the integrand $f(x)$:

$$
\int f(x) \mathrm{d} x=\int f(g(\theta)) g^{\prime}(\theta) \mathrm{d} \theta
$$

which really looks like classic u-substitution, and it may even be referred to as inverse u substitution by some in the mathematical digerati. So let's take a look at some examples, and I will divide it into three cases.

1. The integrand contains an expression of the form $\sqrt{a^{2}-x^{2}}$, just use $x=a \sin \theta$. Now as you already know, the sine function is not invertible, so we need to restrict the domain of $\theta \in[-\pi / 2, \pi / 2]$, and will use $1-\sin ^{2} \theta=\cos ^{2} \theta$ to help simplify the integral. It should be noted that in general, $\sqrt{\cos ^{2} \theta}=|\cos \theta|$, but for the restricted domain of theta, we have $\sqrt{\cos ^{2} \theta}=\cos \theta$.

Example:

$$
\int \sqrt{1-9 x^{2}} \mathrm{~d} x=3 \int \sqrt{1 / 9-x^{2}} \mathrm{~d} x
$$

Now let $x=\frac{\sin \theta}{3}$, then $3 \mathrm{~d} x=\cos \theta \mathrm{d} \theta$.

$$
\begin{aligned}
3 \int \sqrt{1 / 9-x^{2}} \mathrm{~d} x & =\int^{*} \sqrt{\frac{1-\sin ^{2} \theta}{9}} \cos \theta \mathrm{~d} \theta \\
& =\frac{1}{3} \int^{*} \sqrt{1-\sin ^{2} \theta} \cos \theta \mathrm{~d} \theta \\
& =\frac{1}{3} \int^{*} \sqrt{\cos ^{2} \theta} \cos \theta \mathrm{~d} \theta \\
& =\frac{1}{3} \int^{*} \cos \theta \cos \theta \mathrm{~d} \theta \\
& =\frac{1}{3} \int^{*} \cos ^{2} \theta \mathrm{~d} \theta
\end{aligned}
$$

[^0]Recalling the methods from the prior worksheet, we're going to make use of,

$$
\cos ^{2} \theta=\frac{\cos 2 \theta+1}{2}
$$

to continue the process.

$$
\begin{aligned}
\frac{1}{3} \int^{*} \cos ^{2} \theta \mathrm{~d} \theta & =\frac{1}{3} \int^{*} \frac{\cos 2 \theta+1}{2} \mathrm{~d} \theta \\
& =\frac{1}{3}\left(\frac{\sin 2 \theta}{4}+\frac{\theta}{2}\right)+C \\
& =\frac{\sin 2 \theta}{12}+\frac{\theta}{6}+C
\end{aligned}
$$

Okay, I really hate to say it, but we need to return to original variable, x. Yikes! ${ }^{2}$

$$
\int \sqrt{1-9 x^{2}} \mathrm{~d} x=\frac{x \sqrt{1-9 x^{2}}}{2}+\frac{\arcsin 3 x}{6}+C
$$

Give Mathematica a try and see how quickly it does this integral, and it is in full agreement with our result!
2. The integrand contains an expression of the form $\sqrt{a^{2}+x^{2}}$, just use $x=a \tan \theta$. Now as you already know, the tangent function is not invertible, so we need to restrict the domain of $\theta \in(-\pi / 2, \pi / 2)$, and will use $1+\tan ^{2} \theta=\sec ^{2} \theta$ to help simplify the integral. It should be noted that in general, $\sqrt{\sec ^{2} \theta}=|\sec \theta|$, but for the restricted domain of theta, we have $\sqrt{\sec ^{2} \theta}=\sec \theta$.

Example:

$$
\int \frac{1}{x^{2} \sqrt{x^{2}+4}} \mathrm{~d} x
$$

Now let $x=2 \tan \theta$, then $\mathrm{d} x=2 \sec ^{2} \theta \mathrm{~d} \theta$.

$$
\begin{aligned}
\int \frac{1}{x^{2} \sqrt{x^{2}+4}} \mathrm{~d} x & =\int^{*} \frac{1}{4 \tan ^{2} \theta \sqrt{4 \tan ^{2} \theta+4}} 2 \sec ^{2} \theta \mathrm{~d} \theta \\
& =\int^{*} \frac{2 \sec ^{2} \theta}{8 \tan ^{2} \theta \sec \theta} \mathrm{~d} \theta \\
& =\frac{1}{4} \int^{*} \frac{\sec \theta}{\tan ^{2} \theta} \mathrm{~d} \theta \\
& =\frac{1}{4} \int^{*} \frac{\cos \theta}{\sin ^{2} \theta} \mathrm{~d} \theta
\end{aligned}
$$

Oh, another substitution is in order. This time we will let $u=\sin \theta$, then $\mathrm{d} u=\cos \theta \mathrm{d} \theta$.

$$
\begin{aligned}
\frac{1}{4} \int^{*} \frac{\cos \theta}{\sin ^{2} \theta} \mathrm{~d} \theta & =\frac{1}{4} \int^{* *} \frac{1}{u^{2}} \mathrm{~d} u \\
& =\frac{1}{4} \int^{* *} u^{-2} \mathrm{~d} u \\
& =-\frac{1}{4 u}+C \\
& =-\frac{1}{4 \sin \theta}+C
\end{aligned}
$$

[^1]Again, I really hate to say it, but we need to return to original variable, x. Yikes! ${ }^{3}$

$$
\int \frac{1}{x^{2} \sqrt{x^{2}+4}} \mathrm{~d} x=-\frac{\sqrt{x^{2}+4}}{4 x}+C
$$

Give Mathematica a try and see how quickly it does this integral, and it is in full agreement with our result!
3. The integrand contains an expression of the form $\sqrt{x^{2}-a^{2}}$, just use $x=a \sec \theta$. Now as you already know, the secant function is not invertible, so we need to restrict the domain of $\theta \in[0, \pi / 2) \cup[\pi, 3 \pi / 2)$, and will use $\tan ^{2} \theta=\sec ^{2} \theta-1$ to help simplify the integral. It should be noted that in general, $\sqrt{\tan ^{2} \theta}=|\tan \theta|$, but for the restricted domain of theta, we have $\sqrt{\tan ^{2} \theta}=\tan \theta$.

Example:

$$
\int_{\sqrt{2} / 3}^{2 / 3} \frac{1}{x^{5} \sqrt{9 x^{2}-1}} \mathrm{~d} x
$$

Now let $3 x=\sec \theta$, then $3 \mathrm{~d} x=\sec \theta \tan \theta \mathrm{d} \theta$.

$$
\begin{aligned}
\int_{\sqrt{2} / 3}^{2 / 3} \frac{1}{x^{5} \sqrt{9 x^{2}-1}} \mathrm{~d} x & =\int_{\pi / 4}^{\pi / 3} \frac{3^{4}}{\sec ^{5} \theta \sqrt{\sec ^{2} \theta-1}} \sec \theta \tan \theta \mathrm{~d} \theta \\
& =81 \int_{\pi / 4}^{\pi / 3} \cos ^{4} \theta \mathrm{~d} \theta
\end{aligned}
$$

Once again, recalling the methods from the prior worksheet, we're going make use of,

$$
\cos ^{2} \theta=\frac{\cos 2 \theta+1}{2}
$$

to continue the process.

$$
\begin{aligned}
81 \int_{\pi / 4}^{\pi / 3} \cos ^{4} \theta \mathrm{~d} \theta & =81 \int_{\pi / 4}^{\pi / 3}\left(\frac{\cos 2 \theta+1}{2}\right)^{2} \mathrm{~d} \theta \\
& =81 \int_{\pi / 4}^{\pi / 3} \frac{\cos ^{2} 2 \theta+2 \cos 2 \theta+1}{4} \mathrm{~d} \theta \\
& =81 \int_{\pi / 4}^{\pi / 3} \frac{\cos ^{2} 2 \theta}{4}+\frac{\cos 2 \theta}{2}+\frac{1}{4} \mathrm{~d} \theta \\
& =81 \int_{\pi / 4}^{\pi / 3} \frac{\cos 4 \theta+1}{8}+\frac{\cos 2 \theta}{2}+\frac{1}{4} \mathrm{~d} \theta \\
& =81 \int_{\pi / 4}^{\pi / 3} \frac{\cos 4 \theta}{8}+\frac{\cos 2 \theta}{2}+\frac{3}{8} \mathrm{~d} \theta
\end{aligned}
$$

Okay, now it can be evlauated!

$$
\begin{aligned}
81 \int_{\pi / 4}^{\pi / 3} \frac{\cos 4 \theta}{8}+\frac{\cos 2 \theta}{2}+\frac{3}{8} \mathrm{~d} \theta & \left.=81\left(\frac{\sin 4 \theta}{32}+\frac{\sin 2 \theta}{4}+\frac{3 \theta}{8}\right)\right]_{\pi / 4}^{\pi / 3} \\
& =\frac{567 \sqrt{3}}{64}+\frac{81 \pi}{32}-\frac{81}{4}
\end{aligned}
$$

[^2]
1.1 Examples

1. Integrate. $\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} \mathrm{~d} x$
2. Integrate. ${ }^{4} \int \sqrt{4 x^{2}+20} \mathrm{~d} x$
3. Integrate. $\int \frac{1}{x^{2} \sqrt{x^{2}-9}} \mathrm{~d} x$
[^3]
1.2 Solutions

1. Integrate. $\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} \mathrm{~d} x$

Work: Let $x=2 \sin \theta$, then $\mathrm{d} x=2 \cos \theta \mathrm{~d} \theta$.

$$
\begin{aligned}
\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} \mathrm{~d} x & =\int \frac{x^{2}}{\left(\sqrt{4-x^{2}}\right)^{3}} \mathrm{~d} x \\
& =\int^{*} \frac{4 \sin ^{2} \theta}{\left(\sqrt{4-4 \sin ^{2} \theta}\right)^{3}} 2 \cos \theta \mathrm{~d} \theta \\
& =\int^{*} \frac{4 \sin ^{2} \theta}{(2 \cos \theta)^{3}} 2 \cos \theta \mathrm{~d} \theta \\
& =\int^{*} \frac{4 \sin ^{2} \theta}{8 \cos ^{3} \theta} 2 \cos \theta \mathrm{~d} \theta \\
& =\int^{*} \frac{8 \sin ^{2} \theta}{8 \cos ^{2} \theta} \mathrm{~d} \theta \\
& =\int^{*} \tan ^{2} \theta \mathrm{~d} \theta
\end{aligned}
$$

Now what? Looks like we're stuck? No, not yet!

$$
\begin{aligned}
\int^{*} \tan ^{2} \theta \mathrm{~d} \theta & =\int \sec ^{2} \theta-1 \mathrm{~d} \theta \\
& =\tan \theta-\theta+C
\end{aligned}
$$

Now, of course, we will need to return the original variable x.

$$
\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} \mathrm{~d} x=\frac{x}{\sqrt{4-x^{2}}}-\arcsin \frac{x}{2}+C
$$

Mathematica produces the same result.
2. Integrate. $\int \sqrt{4 x^{2}+20} \mathrm{~d} x$

Work: Let's start. We're letting $x=\sqrt{5} \tan \theta$, then $\mathrm{d} x=\sqrt{5} \sec ^{2} \theta \mathrm{~d} \theta$

$$
\begin{aligned}
\int \sqrt{4 x^{2}+20} \mathrm{~d} x & =2 \int \sqrt{x^{2}+5} \mathrm{~d} x \\
& =2 \int^{*} \sqrt{5 \tan ^{2} \theta+5} \sqrt{5} \sec ^{2} \theta \mathrm{~d} \theta \\
& =2 \int^{*} \sqrt{5 \sec ^{2} \theta} \sqrt{5} \sec ^{2} \theta \mathrm{~d} \theta \\
& =10 \int^{*} \sec ^{3} \theta \mathrm{~d} \theta
\end{aligned}
$$

Now using the reduction formula with $m=3$ we get:

$$
10 \int^{*} \sec ^{3} \theta \mathrm{~d} \theta=10\left(\frac{\tan \theta \sec \theta}{2}+\frac{1}{2} \int^{*} \sec \theta \mathrm{~d} \theta\right)=5 \tan \theta \sec \theta+5 \int^{*} \sec \theta \mathrm{~d} \theta .
$$

I hope you at least recognize the remaining integral.

$$
5 \tan \theta \sec \theta+5 \ln |\sec \theta+\tan \theta|+C
$$

Now we must return to the original variable.

$$
\int \sqrt{4 x^{2}+20} \mathrm{~d} x=x \sqrt{x^{2}+5}+5 \ln \left|\frac{\sqrt{x^{2}+5}+x}{\sqrt{5}}\right|+C
$$

3. Integrate. $\int \frac{1}{x^{2} \sqrt{x^{2}-9}} \mathrm{~d} x$

Work: Here I am using $x=3 \sec \theta$, then $\mathrm{d} x=3 \sec \theta \tan \theta \mathrm{~d} \theta$.

$$
\begin{aligned}
\int \frac{1}{x^{2} \sqrt{x^{2}-9}} \mathrm{~d} x & =\int^{*} \frac{1}{9 \sec ^{2} \theta \sqrt{9 \sec ^{2} \theta-9}} 3 \sec \theta \tan \theta \mathrm{~d} \theta \\
& =\frac{1}{9} \int^{*} \frac{\sec \theta \tan \theta}{\sec ^{2} \theta \tan \theta} \mathrm{~d} \theta \\
& =\frac{1}{9} \int^{*} \cos \theta \mathrm{~d} \theta \\
& =\frac{1}{9} \sin \theta+C
\end{aligned}
$$

Returning to the original variable.

$$
\int \frac{1}{x^{2} \sqrt{x^{2}-9}} \mathrm{~d} x=\frac{\sqrt{x^{2}-9}}{9 x}+C
$$

[^0]: ${ }^{1}$ This document was prepared by Ron Bannon (ron.bannon@mathography.org) using IATEX 2ε. Last revised January 10, 2009.

[^1]: ${ }^{2}$ I'll do the trigonometry in class, it's really not too bad.

[^2]: ${ }^{3}$ I'll do the trigonometry in class, it's really not too bad.

[^3]: ${ }^{4}$ You may find useful, a reduction formula:

 $$
 \int \sec ^{m} x \mathrm{~d} x=\frac{\tan x \sec ^{m-2} x}{m-1}+\frac{m-2}{m-1} \int \sec ^{m-2} x \mathrm{~d} x .
 $$

