Essex County College - Division of Mathematics and Physics ${ }^{1}$

Lecture Notes \#13 - Sakai Web Project Material

We won't finish this in class, but I do encourage you to continue working on this on your own. You should also try using a graphing utility to graph very high degree polynomial ... you might learn something!

Consider the functions

$$
y=e^{-x^{2}} \quad \text { and } \quad y=\frac{1}{1+x^{2}}
$$

1. Write the Taylor expansions for the two functions about $x=0$. What is similar about these two series? What is different?
2. Looking at the series, which function do you predict will be greater over the interval $(-1,1)$? Graph both and see.
3. Are these functions even or odd? How might you see this by looking at the series expansion?
4. By looking at the coefficients, explain why it is reasonable that the series for

$$
y=e^{-x^{2}}
$$

converges for all values of x, but the series for

$$
y=\frac{1}{1+x^{2}}
$$

converges only on $(-1,1)$.

[^0]1. Write the Taylor expansions for the two functions about $x=0$. What is similar about these two series? What is different?

Answer: The work is not shown, ask if you cannot do this.

$$
\begin{aligned}
e^{-x^{2}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}=1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\frac{x^{10}}{5!}+\cdots \\
\frac{1}{1+x^{2}} & =\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=1-x^{2}-x^{6}+x^{8}-x^{10}+\cdots
\end{aligned}
$$

2. Looking at the series, which function do you predict will be greater over the interval $(-1,1)$? Graph both and see.

Answer: Well, just looking at the expansions above I'd have to say that the series for $y=\left(1+x^{2}\right)^{-1}$ looks like it will be bigger. The reason is that the coefficients for each term in the series is 1 , whereas the coefficients for $y=e^{-x^{2}}$ in the series expansion is getting really small, really quick! Here's a graph of of both, accurately scaled.

Figure 1: Label each graph! Yes, you can do it!
3. Are these functions even or odd? How might you see this by looking at the series expansion?

Answer: Both graphs are even, no matter where we cut it. Recall the test for even symmetry is

$$
f(x)=f(-x) .
$$

4. By looking at the coefficients, explain why it is reasonable that the series for

$$
y=e^{-x^{2}}
$$

converges for all values of x, but the series for

$$
y=\frac{1}{1+x^{2}}
$$

converges only on $(-1,1)$.
Answer: Although not obvious, $y=e^{-x^{2}}$, s series converges for all x, whereas the series for $y=\left(1+x^{2}\right)^{-1}$ only converges for $x \in(-1,1)$. Looking at the coefficients you should be able to convince your self that factorials grow faster than the powers.

[^0]: ${ }^{1}$ This document was prepared by Ron Bannon (ron.bannon@mathography.org) using IATEX 2ε. Last revised January 10, 2009.

