MTH 122 — Calculus II Essex County College — Division of Mathematics and Physics¹ Lecture Notes #16 — Sakai Web Project Material

1 Introduction to Sequences and Series, Part III

1. Convergence Properties of Series

(a) If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ converge, and if k is a constant, then
i. $\sum_{n=1}^{\infty} (a_n + b_n)$ converges to $\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.
ii. $\sum_{n=1}^{\infty} ka_n$ converges to $k \sum_{n=1}^{\infty} a_n$.

- (b) Changing a finite number of terms in a series does not change whether or not it converges, although it may change the value of its sum if it does not converge.
- (c) If lim_{n→∞} a_n ≠ 0, or lim_{n→∞} a_n = DNE, then ∑[∞]_{n=1} a_n is divergent.
 (d) If ∑[∞]_{n=1} a_n diverges, then ∑[∞]_{n=1} ka_n diverges if k ≠ 0.
- 2. The Integral Test: Suppose f is a continuous, positive, decreasing function on [1, ∞) and a_n = f (n). Then the series ∑_{n=1}[∞] a_n is convergent if and only if the improper integral ∫₁[∞] f (x) dx is convergent. In other words:
 (a) If ∫₁[∞] f (x) dx is convergent, then ∑_{n=1}[∞] a_n is convergent.

(b) If
$$\int_{1}^{\infty} f(x) dx$$
 is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Example: For what values of p does the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converge?

¹This document was prepared by Ron Bannon (ron.bannon@mathography.org) using $\text{LT}_{\text{EX}} 2_{\varepsilon}$. Last revised January 10, 2009.

Work: First just look at the limit

$$\lim_{n\to\infty}\frac{1}{n^p}$$

for $p \leq 0$. Now use the integral test on 0 and <math>p > 1.

1.1 Examples

1. Do the series converge or diverge?

(a) ²
$$\sum_{n=1}^{\infty} \frac{3}{(2n-1)^2}$$

(b) ³
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

(c) ⁴
$$\sum_{n=1}^{\infty} \frac{3}{n^2 + 4}$$

(d) ⁵
$$\sum_{n=1}^{\infty} \frac{n+2^n}{n2^n}$$

²Converges. ³Diverges. ⁴Converges. ⁵Diverges. **Hint:**

$$\int \frac{x+2^x}{x2^x} \, \mathrm{d}x = \ln x - \frac{1}{2^x \ln 2} + C$$

(e) ⁶
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2+2n+2}$$

2. Consider the series

$$\sum_{n=2}^{\infty} \ln \frac{(n-1)(n+1)}{n^2}.$$

(a) Show that S_4 is $\ln(5/8)$.

(b) Show that S_n is

$$\ln \frac{n+1}{2n}.$$

(c) Show that this series converges to

 $-\ln 2$.

⁶Diverges.