MTH 122 — Calculus II Essex County College — Division of Mathematics and Physics¹ Lecture Notes #17 — Sakai Web Project Material

Introduction to Sequences and Series, Part IV 1

- 1. Comparison Test: Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms.
 - (a) If $\sum_{n=1}^{\infty} b_n$ is convergent, and $0 < a_n \le b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ is also convergent. (b) If $\sum_{n=1}^{\infty} b_n$ is divergent, and $a_n \ge b_n > 0$ for all n, then $\sum_{n=1}^{\infty} a_n$ is also divergent.

Example: Use the comparison test to determine whether $\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$ converges. V

Vork: For
$$n \ge 1$$
 we know that $n^3 \le n^3 + 1$, so

$$0 < \frac{1}{n^3 + 1} \le \frac{1}{n^3}.$$

You should note that

$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

is a convergent *p*-series. The conclusion, using the **Comparison Test**, is that

$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$$

also converges.

The two big series that you should use for comparisons are the *p*-series and the geometric series. The harmonic series is a *p*-series, with p = 1.

The Geometric Series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1, and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots = \frac{a}{1-r}.$$

If $|r| \ge 1$, the geometric series is divergent.

¹This document was prepared by Ron Bannon (ron.bannon@mathography.org) using $\operatorname{ITFX} 2_{\varepsilon}$. Last revised January 10, 2009.

The p-series

$$\sum_{n=1}^{\infty} n^{-p}$$

is convergent if p > 1, and is divergent if $p \leq 1$.

1.1 Examples

(a) Use the comparison test to determine whether $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$ converges.²

(b) Use the comparison test to determine whether
$$\sum_{n=1}^{\infty} \frac{n-1}{n^3+3}$$
 converges.³

(c) Use the comparison test to determine whether
$$\sum_{n=1}^{\infty} \frac{6n^2 + 1}{2n^3 - 1}$$
 converges.⁴

(d) Use the comparison test to determine whether
$$\sum_{n=1}^{\infty} \frac{1}{2^n + 1}$$
 converges.⁵

(e) Use the comparison test to determine whether
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$
 converges.⁶

(f) Use the comparison test to determine whether
$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$$
 converges.⁷

 $^{^2\}mathrm{Converges.}$ Use the p-series for comparison.

³Converges. Use the p-series for comparison.

 $^{^4\}mathrm{Diverges.}$ Use the harmonic series for comparison.

 $^{^5\}mathrm{Converges.}$ Use the geometric series for comparison.

 $^{^6\}mathrm{Diverges}.$ Use the harmonic series for comparison.

⁷Diverges. Use the *p*-series for comparison.