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Lecture Notes #19 — Sakai Web Project Material

1 Introduction to Sequences and Series, Part VI

1. The Root Test:

(a) If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely convergent.

(b) If lim
n→∞

n
√
|an| = L > 1, or lim

n→∞
n
√
|an| =∞, then the series

∞∑
n=1

an is divergent.

(c) If lim
n→∞

n
√
|an| = 1, the root test fails, and we can draw no conclusion.

This test works because
lim

n→∞
n
√

an = r

tells use that the series is comparable to a geometric series with ration r.

Example: Use the root test to determine if the series converges.

∞∑
n=1

(
2
n

)n

Work:

lim
n→∞

n

√(
2
n

)n

= lim
n→∞

2
n

= 0 < 1

So the series converges absolutely.

Example: Use the root test to determine if the series converges.

∞∑
n=1

(
5n2 + 1

3n2

)n

Work:

lim
n→∞

n

√(
5n2 + 1

3n2

)n

= lim
n→∞

5n2 + 1
3n2

=
5
3

> 1

So the series diverges .

1This document was prepared by Ron Bannon (ron.bannon@mathography.org) using LATEX 2ε. Last revised
January 10, 2009.
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2 Summary for Testing Series

Before you come to the exam, I strongly suggest that you review the following listed items. I
also think it might be appropriate to make a one page review sheet covering these items, and this
should be prepared well in advance of any exam/quiz related to this material. Representative
problems are provided, but we’ll only be doing a few of these in class.

1. Know the p-series!

The p-series
∞∑

n=1

n−p

is convergent if p > 1, and is divergent if p ≤ 1.

2. Know the geometric series!

The geometric series

∞∑
n=1

arn−1 = a + ar + ar2 + · · ·

is convergent if |r| < 1, and its sum is

∞∑
n=1

arn−1 = a + ar + ar2 + · · · = a

1− r
.

If |r| ≥ 1, the geometric series is divergent.

3. Know the test for divergence!

If the series
∞∑

n=1

an

is convergent, then
lim

n→∞
an = 0.

4. Know the integral test!

The Integral Test: Suppose f is a continuous, positive, decreasing function

on [1, ∞) and an = f (n). Then the series
∞∑

n=1

an is convergent if and only if

the improper integral
∫ ∞

1
f (x) dx is convergent. In other words:

(a) If
∫ ∞

1
f (x) dx is convergent, then

∞∑
n=1

an is convergent.

(b) If
∫ ∞

1
f (x) dx is divergent, then

∞∑
n=1

an is divergent.
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5. Know the (limit) comparison tests!

Comparison Test: Suppose that
∞∑

n=1

an and
∞∑

n=1

bn are series with positive

terms.

(a) If
∞∑

n=1

bn is convergent, and 0 < an ≤ bn for all n, then
∞∑

n=1

an is also

convergent.

(b) If
∞∑

n=1

bn is divergent, and an ≥ bn > 0 for all n, then
∞∑

n=1

an is also divergent.

Limit Comparison Test: Suppose that
∞∑

n=1

an and
∞∑

n=1

bn are series with pos-

itive terms. If lim
n→∞

an

bn
= c where c > 0 is a finite positive number, then either

both series converge or both series diverge.

6. Know the test for alternating series!

Alternating Series Test: If the alternating series

∞∑
n=1

(−1)n−1 an = a1 − a2 + a3 − a4 + · · · (an > 0)

satisfies

(a) an+1 ≤ an for all n;
(b) and lim

n→∞
an = 0,

then the series converges.

7. Know the ratio test!

The Ratio Test:

(a) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∞∑

n=1

an is absolutely convergent.

(b) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1, or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞, then the series
∞∑

n=1

an is

divergent.

(c) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, the ratio test fails, and we can draw no conclusion.
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8. Know the root test!

The Root Test:

(a) If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely convergent.

(b) If lim
n→∞

n
√
|an| = L > 1, or lim

n→∞
n
√
|an| = ∞, then the series

∞∑
n=1

an is

divergent.
(c) If lim

n→∞
n
√
|an| = 1, the root test fails, and we can draw no conclusion.

Yes, these concepts have been extensively covered! And many examples were done in class, in
addition to these examples the homework/textbook should help you understand their proper
use. The more problems you do, the better you’ll get.2

3 Examples

Although answers are provided, they solutions are not extensively worked out. Please, if you
need to see complete work for any of these problems—just ask!

Test the series for convergence or divergence.

1.
∞∑

n=1

(
n
√

2− 1
)n

Work: Converges by the Root Test. That is,

lim
n→∞

n

√(
n
√

2− 1
)n

= 0 < 1.

2.
∞∑

n=2

1

(ln n)ln n

Work: This one is a bit tough.

(ln n)ln n =
(
eln(ln n)

)ln n

=
(
eln n

)ln(ln n)

= (n)ln(ln n)

Now as n→∞ we can state that ln (ln n) > 2 for all n > 1618, so we have

1

(ln n)ln n
<

1
n2

.

2I am reminded of a professor at Columbia University who never gave examples, yet he knew the theory
well—his chair requested that he extemporaneously make-up an example, he was completely befuddle as a result.
His exams were impossibly difficult and even his research assistant would inform us prior to the exams that the
professor wouldn’t be able to do these problems. Fact is, theory and proof don’t necessarily make for great
problem solvers. In short—get to work !
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Since
∞∑

n=2

1
n2

is a convergent p-series, we can conclude that

∞∑
n=2

1

(ln n)ln n

also converges by the Comparison Test.

3.
∞∑

n=1

n
√

e

n2

Work: We know that the harmonic sequence is decreasing for all n ≥ 1, we can state that

n
√

e = e1/n < e,

for all n ≥ 1. And
∞∑

n=1

e

n2

is a convergent p-series. Now, using the Comparison Test we can conclude that

∞∑
n=1

n
√

e

n2

is convergent . You could have also use the Integral Test, which I think is probably
easier to do.

4.
∞∑

n=1

1
2n + 1

Work: Diverges by the Limit Comparison Test. That is,

an =
1

2n + 1
, bn =

1
n

, lim
n→∞

an

bn
=

1
2

> 0.

Since the harmonic series
∞∑

n=1

1
n

diverges, so does
∞∑

n=1

1
2n + 1

.

The Integral Test would also be valid.
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5.
∞∑

n=1

(−1)n n
√

2

Work: Diverges by the Test for Divergence. That is,

lim
n→∞

(−1)n n
√

2

does not exist.

6.
∞∑

n=1

(−1)n√n

n + 5

Work: Using

f (x) =
√

x

x + 5
which is a continuous, positive and decreasing for x > 5. So this series converges by the
Alternating Series Test. That is, for n ≥ 6, |an| is decreasing and

lim
n→∞

|an| = 0.

7.
∞∑

n=1

(2n + 1)n

n2n

Work: Converges by the Root Test. That is,

lim
n→∞

n

√
(2n + 1)n

n2n
= 0 < 1.

8.
∞∑

n=1

(−1)n n

n2 + 2

Work: This is an alternating series where

|an| > |an+1| ,

for n ≥ 2, and
lim

n→∞
an = 0.

So this series converges by the Alternating Series Test.

9.
∞∑

n=1

n2

en3

Work: Let

f (x) =
x2

ex3 .
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Since f is a positive, continuous, decreasing function on [1, ∞), we can apply the Integral
Test. And ∫ ∞

2

x2

ex3 dx =
1
3e

,

so we can conclude that the original series converges .

10.
∞∑

n=1

(−1)n ln n√
n

Work: This series converges by the Alternating Series Test. That is, for n ≥ 8, |an|
is decreasing and

lim
n→∞

|an| = 0.

11.
∞∑

n=1

(
n
√

2− 1
)

Work: Diverges by the Limit Comparison Test. That is,

an =
(

n
√

2− 1
)

, bn =
1
n

, lim
n→∞

an

bn
= ln 2 > 0.

Since the series
∞∑

n=1

1
n

is a divergent (harmonic series), so we can conclude that
∞∑

n=1

(
n
√

2− 1
)

also diverges.

12.
∞∑

n=1

1
n + n cos2 n

Work: Since 0 ≤ n cos2 n ≤ n for n ≥ 1, we have

1
n + n cos2 n

≥ 1
n + n

=
1

2n
.

Thus, since
∞∑

n=1

1
2n

=
1
2

∞∑
n=1

1
n

is divergent (harmonic series), we can conclude that
∞∑

n=1

1
n + n cos2 n

diverges by the Comparison Test.
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13.
∞∑

n=1

sin 2n

1 + 2n

Work: Using the comparison ∣∣∣∣ sin 2n

1 + 2n

∣∣∣∣ < 1
2n

,

we know that
∞∑

n=1

1
2n

is a convergent geometric series. So the original series absolutely converges by the Com-
parison Test.

14.
∞∑

n=1

n2 + 1
n3 + 1

Work: Using the Limit Comparison Test, with

an =
n2 + 1
n3 + 1

≈ 1
n

= bn

we get
lim

n→∞

an

bn
= 1 > 0,

and since
∑∞

n=1 bn is a divergent (harmonic series) series, we conclude that our original
series diverges .

15.
∞∑

n=1

2nn!
(n + 2)!

Work: Using the Ratio Test, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2 > 1,

so the series diverges . The Test for Divergence would also be valid.

16.
∞∑

n=1

(−2)2n

nn

Work: Here we have
∞∑

n=1

(−2)2n

nn
=
∞∑

n=1

(
4
n

)n

Absolutely converges by the Root Test. That is,

lim
n→∞

n

√(
4
n

)n

= 0 < 1.
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17.
∞∑

n=1

n2

en

Work: Using the Ratio Test, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
1
e

< 1,

so the series converges .

18.
∞∑

n=1

sin n

Work: Diverges by the Test for Divergence since

lim
n→∞

sin n

does not exist.

19.
∞∑

n=1

(−1)n n

n + 2

Work: Diverges by the Test for Divergence. That is,

lim
n→∞

∣∣∣∣(−1)n n

n + 2

∣∣∣∣ = 1.

20.
∞∑

n=1

1
n + 3n

Work: Converges by the Comparison Test. That is,

1
n + 3n

<

(
1
3

)n

,

for all n ≥ 1. And
∞∑

n=1

(
1
3

)n

is a convergent geometric series.

21.
∞∑

n=2

1
n
√

ln n

Work: Let
f (x) =

1
x
√

ln x
.
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Since f is a positive, continuous, decreasing function on [2, ∞), we can apply the Integral
Test. And ∫ ∞

2

1
x
√

ln x
dx =∞,

so we can conclude that the original series diverges .

22.
∞∑

n=1

n22n−1

(−5)n

Work: This series converges by the Ratio Test. That is,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
2
5

< 1.

23.
∞∑

n=0

n!
2 · 5 · 8 · · · · · (3n + 2)

Work: Using the Ratio Test, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
1
3

< 1,

so the series converges .

24.
∞∑

n=1

(−1)n+1

n ln n

Work: This series converges by the Alternating Series Test. That is, for n ≥ 2, |an|
is decreasing and

lim
n→∞

|an| = 0.

25.
∞∑

n=1

n ln n

(n + 1)3

Work: First, we have
n ln n

(n + 1)3
<

n ln n

n3
=

ln n

n2

for n ≥ 1. Now let

f (x) =
ln x

x2
.

Since f is a positive, continuous, decreasing function on [2, ∞), we can apply the Integral
Test, ∫ ∞

2

ln x

x2
dx = 1,
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so we can conclude that
∞∑

n=1

ln n

n2

converges. Now, using the Comparison Test, with

n ln n

(n + 1)3
<

ln n

n2

for n ≥ 2, since we know that
∞∑

n=1

ln n

n2

is a convergent using the Integral Test, so we can conclude that the original series also
converges .

26.
∞∑

n=2

3nn2

n!

Work: Using the Ratio Test, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 < 1,

so the series converges .

27.
∞∑

n=1

n + 5
5n

Work: Using the Ratio Test, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
1
5

< 1,

so the series converges .

28.
∞∑

n=1

√
n2 − 1

n3 + 2n2 + 5

Work: Using the comparison √
n2 − 1

n3 + 2n2 + 5
<

1
n2

,

for n ≥ 1, and we know that
∞∑

n=1

1
n2

is a convergent p-series. So the original series converges .
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29.
∞∑

n=2

(−1)n−1

√
n− 1

Work: This series converges by the Alternating Series Test. That is, for n ≥ 2, |an|
is decreasing and

lim
n→∞

|an| = 0.

30.
∞∑

n=1

n sin
1
n

Work: Diverges by the Test for Divergence. That is,

lim
n→∞

n sin
1
n

= 1 6= 0.

31.
∞∑

n=1

tan
1
n

Work: Using the Limit Comparison Test, with

an = tan
1
n

<
1
n

= bn

we get
lim

n→∞

an

bn
= 1 > 0,

and since
∑∞

n=1 bn is a divergent (harmonic series) series, we conclude that our original
series diverges .

32.
∞∑

n=1

sin (1/n)√
n

Work: Converges by the Limit Comparison Test. That is,

an =
sin (1/n)√

n
, bn =

1
n3/2

, lim
n→∞

an

bn
= 1 > 0.

Since the series
∞∑

n=1

1
n3/2

is a convergent p-series, so we can conclude that

∞∑
n=1

sin (1/n)√
n

also converges.
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33.
∞∑

n=1

n!
en2

Work: Using the Ratio Test, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 < 1,

so the series converges .

34.
∞∑

n=1

n2 + 1
5n

Work: Using the Ratio Test, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
1
5

< 1,

so the series converges .

35.
∞∑

n=1

(
n

n + 1

)n2

Work: Converges by the Root Test. That is,

lim
n→∞

n

√(
n

n + 1

)n2

=
1
e

< 1.

36.
∞∑

n=1

(−1)n

cosh n

Work: You might need to look up the hyperbolic functions before proceeding. The
necessary definition is:

cosh x =
ex + e−x

2
.

So we have
∞∑

n=1

(−1)n

cosh n
=
∞∑

n=1

(−1)n 2
en + e−n

.

Although this rewriting is not necessary, I think it is obvious that we are now dealing with
an alternating series, with

|an| > |an+1| ,

and,
lim

n→∞
an = 0.

So the series converges by the Alternating Series Test.
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37.
∞∑

n=1

5n

3n + 4n

Work: This series diverges by the Test for Divergence. That is

lim
n→∞

5n

3n + 4n
= lim

n→∞

(5/4)n

(3/4)n + 1
=∞.

38.
∞∑

n=1

(n!)n

n4n

Work: Diverges by the Root Test. That is,

lim
n→∞

n

√
(n!)n

n4n
=∞ > 1.
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