1 Introduction to Sequences and Series, Part VI

1. The Root Test:

(a) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(b) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$, or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(c) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the root test fails, and we can draw no conclusion.

This test works because

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=r
$$

tells use that the series is comparable to a geometric series with ration r.
Example: Use the root test to determine if the series converges.

$$
\sum_{n=1}^{\infty}\left(\frac{2}{n}\right)^{n}
$$

Work:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{2}{n}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{2}{n}=0<1
$$

So the series converges absolutely.
Example: Use the root test to determine if the series converges.

$$
\sum_{n=1}^{\infty}\left(\frac{5 n^{2}+1}{3 n^{2}}\right)^{n}
$$

Work:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{5 n^{2}+1}{3 n^{2}}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{5 n^{2}+1}{3 n^{2}}=\frac{5}{3}>1
$$

So the series diverges.

[^0]
2 Summary for Testing Series

Before you come to the exam, I strongly suggest that you review the following listed items. I also think it might be appropriate to make a one page review sheet covering these items, and this should be prepared well in advance of any exam/quiz related to this material. Representative problems are provided, but we'll only be doing a few of these in class.

1. Know the p-series!

The p-series

$$
\sum_{n=1}^{\infty} n^{-p}
$$

is convergent if $p>1$, and is divergent if $p \leq 1$.
2. Know the geometric series!

The geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots
$$

is convergent if $|r|<1$, and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots=\frac{a}{1-r}
$$

If $|r| \geq 1$, the geometric series is divergent.
3. Know the test for divergence!

If the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

is convergent, then

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

4. Know the integral test!

The Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) \mathrm{d} x$ is convergent. In other words:
(a) If $\int_{1}^{\infty} f(x) \mathrm{d} x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(b) If $\int_{1}^{\infty} f(x) \mathrm{d} x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
5. Know the (limit) comparison tests!

Comparison Test: Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms.
(a) If $\sum_{n=1}^{\infty} b_{n}$ is convergent, and $0<a_{n} \leq b_{n}$ for all n, then $\sum_{n=1}^{\infty} a_{n}$ is also convergent.
(b) If $\sum_{n=1}^{\infty} b_{n}$ is divergent, and $a_{n} \geq b_{n}>0$ for all n, then $\sum_{n=1}^{\infty} a_{n}$ is also divergent.

Limit Comparison Test: Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ where $c>0$ is a finite positive number, then either both series converge or both series diverge.
6. Know the test for alternating series!

Alternating Series Test: If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots \quad\left(a_{n}>0\right)
$$

satisfies
(a) $a_{n+1} \leq a_{n}$ for all n;
(b) and $\lim _{n \rightarrow \infty} a_{n}=0$,
then the series converges.
7. Know the ratio test!

The Ratio Test:

(a) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(b) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$, or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(c) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the ratio test fails, and we can draw no conclusion.
8. Know the root test!

The Root Test:

(a) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(b) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$, or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(c) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the root test fails, and we can draw no conclusion.

Yes, these concepts have been extensively covered! And many examples were done in class, in addition to these examples the homework/textbook should help you understand their proper use. The more problems you do, the better you'll get. ${ }^{2}$

3 Examples

Although answers are provided, they solutions are not extensively worked out. Please, if you need to see complete work for any of these problems-just ask!

Test the series for convergence or divergence.

1. $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n}$

Work: Converges by the Root Test. That is,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{(\sqrt[n]{2}-1)^{n}}=0<1
$$

2. $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$

Work: This one is a bit tough.

$$
\begin{aligned}
(\ln n)^{\ln n} & =\left(e^{\ln (\ln n)}\right)^{\ln n} \\
& =\left(e^{\ln n}\right)^{\ln (\ln n)} \\
& =(n)^{\ln (\ln n)}
\end{aligned}
$$

Now as $n \rightarrow \infty$ we can state that $\ln (\ln n)>2$ for all $n>1618$, so we have

$$
\frac{1}{(\ln n)^{\ln n}}<\frac{1}{n^{2}} .
$$

[^1]Since

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}}
$$

is a convergent p-series, we can conclude that

$$
\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}
$$

also converges by the Comparison Test.
3. $\sum_{n=1}^{\infty} \frac{\sqrt[n]{e}}{n^{2}}$

Work: We know that the harmonic sequence is decreasing for all $n \geq 1$, we can state that

$$
\sqrt[n]{e}=e^{1 / n}<e
$$

for all $n \geq 1$. And

$$
\sum_{n=1}^{\infty} \frac{e}{n^{2}}
$$

is a convergent p-series. Now, using the Comparison Test we can conclude that

$$
\sum_{n=1}^{\infty} \frac{\sqrt[n]{e}}{n^{2}}
$$

is convergent. You could have also use the Integral Test, which I think is probably easier to do.
4. $\sum_{n=1}^{\infty} \frac{1}{2 n+1}$

Work: Diverges by the Limit Comparison Test. That is,

$$
a_{n}=\frac{1}{2 n+1}, b_{n}=\frac{1}{n}, \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{1}{2}>0 .
$$

Since the harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

diverges, so does

$$
\sum_{n=1}^{\infty} \frac{1}{2 n+1}
$$

The Integral Test would also be valid.
5. $\sum_{n=1}^{\infty}(-1)^{n} \sqrt[n]{2}$

Work: Diverges by the Test for Divergence. That is,

$$
\lim _{n \rightarrow \infty}(-1)^{n} \sqrt[n]{2}
$$

does not exist.
6. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{n+5}$

Work: Using

$$
f(x)=\frac{\sqrt{x}}{x+5}
$$

which is a continuous, positive and decreasing for $x>5$. So this series converges by the Alternating Series Test. That is, for $n \geq 6,\left|a_{n}\right|$ is decreasing and

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0
$$

7. $\sum_{n=1}^{\infty} \frac{(2 n+1)^{n}}{n^{2 n}}$

Work: Converges by the Root Test. That is,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n+1)^{n}}{n^{2 n}}}=0<1
$$

8. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{2}+2}$

Work: This is an alternating series where

$$
\left|a_{n}\right|>\left|a_{n+1}\right|,
$$

for $n \geq 2$, and

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

So this series converges by the Alternating Series Test.
9. $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n^{3}}}$

Work: Let

$$
f(x)=\frac{x^{2}}{e^{x^{3}}}
$$

Since f is a positive, continuous, decreasing function on $[1, \infty)$, we can apply the Integral Test. And

$$
\int_{2}^{\infty} \frac{x^{2}}{e^{x^{3}}} \mathrm{~d} x=\frac{1}{3 e},
$$

so we can conclude that the original series converges.
10. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{\sqrt{n}}$

Work: This series converges by the Alternating Series Test. That is, for $n \geq 8,\left|a_{n}\right|$ is decreasing and

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 .
$$

11. $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)$

Work: Diverges by the Limit Comparison Test. That is,

$$
a_{n}=(\sqrt[n]{2}-1), b_{n}=\frac{1}{n}, \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\ln 2>0
$$

Since the series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

is a divergent (harmonic series), so we can conclude that

$$
\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)
$$

also diverges.
12. $\sum_{n=1}^{\infty} \frac{1}{n+n \cos ^{2} n}$

Work: Since $0 \leq n \cos ^{2} n \leq n$ for $n \geq 1$, we have

$$
\frac{1}{n+n \cos ^{2} n} \geq \frac{1}{n+n}=\frac{1}{2 n}
$$

Thus, since

$$
\sum_{n=1}^{\infty} \frac{1}{2 n}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}
$$

is divergent (harmonic series), we can conclude that

$$
\sum_{n=1}^{\infty} \frac{1}{n+n \cos ^{2} n}
$$

diverges by the Comparison Test.
13. $\sum_{n=1}^{\infty} \frac{\sin 2 n}{1+2^{n}}$

Work: Using the comparison

$$
\left|\frac{\sin 2 n}{1+2^{n}}\right|<\frac{1}{2^{n}},
$$

we know that

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}
$$

is a convergent geometric series. So the original series absolutely converges by the Comparison Test.
14. $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}$

Work: Using the Limit Comparison Test, with

$$
a_{n}=\frac{n^{2}+1}{n^{3}+1} \approx \frac{1}{n}=b_{n}
$$

we get

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1>0
$$

and since $\sum_{n=1}^{\infty} b_{n}$ is a divergent (harmonic series) series, we conclude that our original series diverges.
15. $\sum_{n=1}^{\infty} \frac{2^{n} n!}{(n+2)!}$

Work: Using the Ratio Test, we get

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=2>1
$$

so the series diverges. The Test for Divergence would also be valid.
16. $\sum_{n=1}^{\infty} \frac{(-2)^{2 n}}{n^{n}}$

Work: Here we have

$$
\sum_{n=1}^{\infty} \frac{(-2)^{2 n}}{n^{n}}=\sum_{n=1}^{\infty}\left(\frac{4}{n}\right)^{n}
$$

Absolutely converges by the Root Test. That is,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{4}{n}\right)^{n}}=0<1
$$

17. $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n}}$

Work: Using the Ratio Test, we get

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{e}<1,
$$

so the series converges.
18. $\sum_{n=1}^{\infty} \sin n$

Work: Diverges by the Test for Divergence since

$$
\lim _{n \rightarrow \infty} \sin n
$$

does not exist.
19. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n+2}$

Work: Diverges by the Test for Divergence. That is,

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} n}{n+2}\right|=1
$$

20. $\sum_{n=1}^{\infty} \frac{1}{n+3^{n}}$

Work: Converges by the Comparison Test. That is,

$$
\frac{1}{n+3^{n}}<\left(\frac{1}{3}\right)^{n}
$$

for all $n \geq 1$. And

$$
\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}
$$

is a convergent geometric series.
21. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$

Work: Let

$$
f(x)=\frac{1}{x \sqrt{\ln x}}
$$

Since f is a positive, continuous, decreasing function on $[2, \infty)$, we can apply the Integral Test. And

$$
\int_{2}^{\infty} \frac{1}{x \sqrt{\ln x}} \mathrm{~d} x=\infty
$$

so we can conclude that the original series diverges.
22. $\sum_{n=1}^{\infty} \frac{n^{2} 2^{n-1}}{(-5)^{n}}$

Work: This series converges by the Ratio Test. That is,

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{5}<1 .
$$

23. $\sum_{n=0}^{\infty} \frac{n!}{2 \cdot 5 \cdot 8 \cdot \cdots \cdot(3 n+2)}$

Work: Using the Ratio Test, we get

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{3}<1
$$

so the series converges.
24. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$

Work: This series converges by the Alternating Series Test. That is, for $n \geq 2,\left|a_{n}\right|$ is decreasing and

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0
$$

25. $\sum_{n=1}^{\infty} \frac{n \ln n}{(n+1)^{3}}$

Work: First, we have

$$
\frac{n \ln n}{(n+1)^{3}}<\frac{n \ln n}{n^{3}}=\frac{\ln n}{n^{2}}
$$

for $n \geq 1$. Now let

$$
f(x)=\frac{\ln x}{x^{2}}
$$

Since f is a positive, continuous, decreasing function on $[2, \infty)$, we can apply the Integral Test,

$$
\int_{2}^{\infty} \frac{\ln x}{x^{2}} \mathrm{~d} x=1
$$

so we can conclude that

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}
$$

converges. Now, using the Comparison Test, with

$$
\frac{n \ln n}{(n+1)^{3}}<\frac{\ln n}{n^{2}}
$$

for $n \geq 2$, since we know that

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}
$$

is a convergent using the Integral Test, so we can conclude that the original series also converges.
26. $\sum_{n=2}^{\infty} \frac{3^{n} n^{2}}{n!}$

Work: Using the Ratio Test, we get

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0<1,
$$

so the series converges.
27. $\sum_{n=1}^{\infty} \frac{n+5}{5^{n}}$

Work: Using the Ratio Test, we get

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{5}<1,
$$

so the series converges.
28. $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}-1}}{n^{3}+2 n^{2}+5}$

Work: Using the comparison

$$
\frac{\sqrt{n^{2}-1}}{n^{3}+2 n^{2}+5}<\frac{1}{n^{2}}
$$

for $n \geq 1$, and we know that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

is a convergent p-series. So the original series converges.
29. $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}$

Work: This series converges by the Alternating Series Test. That is, for $n \geq 2,\left|a_{n}\right|$ is decreasing and

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 .
$$

30. $\sum_{n=1}^{\infty} n \sin \frac{1}{n}$

Work: Diverges by the Test for Divergence. That is,

$$
\lim _{n \rightarrow \infty} n \sin \frac{1}{n}=1 \neq 0
$$

31. $\sum_{n=1}^{\infty} \tan \frac{1}{n}$

Work: Using the Limit Comparison Test, with

$$
a_{n}=\tan \frac{1}{n}<\frac{1}{n}=b_{n}
$$

we get

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1>0
$$

and since $\sum_{n=1}^{\infty} b_{n}$ is a divergent (harmonic series) series, we conclude that our original series diverges.
32. $\sum_{n=1}^{\infty} \frac{\sin (1 / n)}{\sqrt{n}}$

Work: Converges by the Limit Comparison Test. That is,

$$
a_{n}=\frac{\sin (1 / n)}{\sqrt{n}}, b_{n}=\frac{1}{n^{3 / 2}}, \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1>0 .
$$

Since the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}
$$

is a convergent p-series, so we can conclude that

$$
\sum_{n=1}^{\infty} \frac{\sin (1 / n)}{\sqrt{n}}
$$

also converges.
33. $\sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}$

Work: Using the Ratio Test, we get

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0<1,
$$

so the series converges.
34. $\sum_{n=1}^{\infty} \frac{n^{2}+1}{5^{n}}$

Work: Using the Ratio Test, we get

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{5}<1,
$$

so the series converges.
35. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$

Work: Converges by the Root Test. That is,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n}{n+1}\right)^{n^{2}}}=\frac{1}{e}<1
$$

36. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\cosh n}$

Work: You might need to look up the hyperbolic functions before proceeding. The necessary definition is:

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

So we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\cosh n}=\sum_{n=1}^{\infty} \frac{(-1)^{n} 2}{e^{n}+e^{-n}}
$$

Although this rewriting is not necessary, I think it is obvious that we are now dealing with an alternating series, with

$$
\left|a_{n}\right|>\left|a_{n+1}\right|,
$$

and,

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

So the series converges by the Alternating Series Test.
37. $\sum_{n=1}^{\infty} \frac{5^{n}}{3^{n}+4^{n}}$

Work: This series diverges by the Test for Divergence. That is

$$
\lim _{n \rightarrow \infty} \frac{5^{n}}{3^{n}+4^{n}}=\lim _{n \rightarrow \infty} \frac{(5 / 4)^{n}}{(3 / 4)^{n}+1}=\infty
$$

38. $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{4 n}}$

Work: Diverges by the Root Test. That is,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(n!)^{n}}{n^{4 n}}}=\infty>1
$$

[^0]: ${ }^{1}$ This document was prepared by Ron Bannon (ron.bannon@mathography.org) using LATEX 2ε. Last revised January 10, 2009.

[^1]: ${ }^{2}$ I am reminded of a professor at Columbia University who never gave examples, yet he knew the theory well-his chair requested that he extemporaneously make-up an example, he was completely befuddle as a result. His exams were impossibly difficult and even his research assistant would inform us prior to the exams that the professor wouldn't be able to do these problems. Fact is, theory and proof don't necessarily make for great problem solvers. In short-get to work!

