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1 Power Series

1. A power series is a series of the form

f (x) =
∞∑

n=0

anxn = a0 + a1x + a2x
2 + a3x

3 + · · ·

where x is a variable and the an’s are constants called the coefficients of the series. The
domain of this function is the set of all x for which this series is convergent.

2. A power series in (x− b) is a power series centered at b, where b is a constant.

f (x) =
∞∑

n=0

an (x− b)n = a0 + a1 (x− b) + a2 (x− b)2 + a3 (x− b)3 + · · ·

where x is a variable and the an’s are constants called the coefficients of the series. The
domain of this function is the set of all x for which this series is convergent, and you should
notice that this series always converges for x = a.

3. Theorem: For a given power series

∞∑
n=0

an (x− b)n = a0 + a1 (x− b) + a2 (x− b)2 + a3 (x− b)3 + · · ·

there are only three possibilities:

(a) The series converges only when x = b. The radius of convergence is defined to be
r = 0.

(b) The series converges for all x. The radius of convergence is defined to be r =∞.

(c) There is a positive number R such that the series converges if |x− b| < R and diverges
for |x− b| > R. What happens at |x− b| = R should also be examined. The radius
of convergence is between b− r and b + r, including any endpoints where the series
converges.

4. Theorem: If the power series

∞∑
n=0

an (x− b)n = a0 + a1 (x− b) + a2 (x− b)2 + a3 (x− b)3 + · · ·

1This document was prepared by Ron Bannon (ron.bannon@mathography.org) using LATEX 2ε. Last revised
January 10, 2009.
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has a radius of convergence R > 0, the the function defined by

f (x) = a0 + a1 (x− b) + a2 (x− b)2 + a3 (x− b)3 + · · · =
∞∑

n=0

an (x− b)n

is differentiable (and therefore continuous) on the interval (b−R, b + R).

5. Method for Computing the Radius of Convergence: To calculate the radius of
convergence, r, for the power series

∞∑
n=0

an (x− b)n ,

use the ratio test.

(a) If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
is infinite, then r = 0.

(b) If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0,

then r =∞.

(c) If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = k |x− b| ,

where k is a constant, then r =
1
k

.

Now let’s look at some key examples.

• The geometric series

f (x) =
∞∑

n=0

xn = 1 + x + x2 + · · ·

is certainly recognizable, but let’s do the Ratio Test to see where it converges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = |x| < 1

So −1 < x < 1, but what if x = ±1? If x = 1 we get

f (1) =
∞∑

n=0

1 = 1 + 1 + 1 + · · · ,

which is clearly divergent. Now if x = −1 we get

f (−1) =
∞∑

n=0

1 = 1− 1 + 1− · · · ,

which is also clearly divergent. So the Radius of Convergence is R = 1, and the
Interval of Convergence is (−1, 1).
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• Here’s another (unrecognizable) series

f (x) =
∞∑

n=0

n!xn = 1 + x + 2x2 + 6x3 + · · ·

and we will do the Ratio Test to see where it converges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)!xn+1

n!xn

∣∣∣∣ = (n + 1) |x| =∞,

however, if x = 0 this limit will be zero and the series will be convergent. Here we need to
adopt a convention, that (x− a)0 = 1 even if x = a, so

f (0) = 1.

So the Radius of Convergence is R = 0, and the Interval of Convergence is [0, 0]
or {0} indicating a set with one element.

• Here’s another (unrecognizable) series

f (x) =
∞∑

n=1

(x− 1)n

n
= (x− 1) +

(x− 1)2

2
+

(x− 1)3

3
+ · · ·

and we will do the Ratio Test to see where it converges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ n (x− 1)n+1

(n + 1) (x− 1)n

∣∣∣∣∣ =
n |x− 1|
n + 1

= |x− 1| < 1,

so the series will be convergent when 0 < x < 2. We will still need to look at x = 0 and
x = 2, because the Ratio Test is inconclusive here. When x = 0 we get

f (0) =
∞∑

n=1

(−1)n

n
= −1 +

1
2
− 1

3
+ · · · ,

which is an alternating harmonic series and hence convergent. Now we need to look at
x = 2 where we get

f (2) =
∞∑

n=1

(2− 1)n

n
= 1 +

1
2

+
1
3

+ · · ·

a divergent harmonic series. So the Radius of Convergence is R = 1, and the Interval
of Convergence is [0, 2).

• Here’s another (unrecognizable) series

f (x) =
∞∑

n=0

(−1)n x2n

22n (n!)2
= 1− x2

4
+

x4

64
− · · ·

and we will do the Ratio Test to see where it converges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x2n+2

22n+2 [(n + 1)!]2
· 22n (n!)2

x2n

∣∣∣∣∣ = lim
n→∞

x2

4 (n + 1)2
= 0

so the series will be convergent when −∞ < x <∞. So the Radius of Convergence is
R =∞, and the Interval of Convergence is (−∞, ∞).
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2 Can You Do These?

2.1 Problems

1. For what values of x is the series
∞∑

n=0

(−3)n xn

√
n + 1

convergent?

2. Show that the power series for

ex = 1 + x +
x2

2!
+

x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!

converges for all x.

3. The Bessel2 function order zero is defined by the series

∞∑
n=0

(−1)n x2n

22n (n!)2
.

Find the interval of convergence, which is also the domain.

4. Determine the radius of convergence for

(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · · =

∞∑
n=1

(−1)n−1 (x− 1)n

n
.

5. Determine the radius of convergence for

x− x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=1

(−1)n−1 x2n−1

(2n− 1)!
.

6. Find the radius and interval of convergence of the series

1 + 22x2 + 24x4 + · · ·+ 22nx2n + · · ·

7. Find the radius and interval of convergence of the series

∞∑
n=0

n (x + 2)n

3n+1
.

2Daniel Bernoulli—the Swiss mathematician—defined defined and it was later generalized by the German
Friedrich Bessel.
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2.2 Solutions

1. For what values of x is the series

f (x) =
∞∑

n=0

(−3)n xn

√
n + 1

convergent?

Work:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

3 |x|
√

n + 1√
n + 2

= 3 |x|

Using the Ratio Test we have 3 |x| or −1/3 < x < 1/3. Since the Ratio Test is
inconclusive at x = ±1/3, we need to see what happens at these values. Looking at
x = 1/3 we have

f

(
1
3

)
=
∞∑

n=0

(−1)n

√
n + 1

which is an alternating series and converges by the Alternating Series Test. For x =
−1/3 we have

f

(
−1

3

)
=
∞∑

n=0

1√
n + 1

which is divergent by the Integral Test. You could have also use the p-series for com-
parison to show that this is divergent. So the Radius of Convergence is R = 1/3, and
the Interval of Convergence is (−1/3, 1/3].

2. Show that the power series for

ex = 1 + x +
x2

2!
+

x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!

converges for all x.

Work:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n + 1)!
÷ xn

n!

∣∣∣∣
= lim

n→∞

∣∣∣∣ xn+1

(n + 1)!
· n!
xn

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

n + 1

∣∣∣∣
= |x| lim

n→∞

1
n + 1

= 0

Q.E.D.
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3. The Bessel3 function order zero is defined by the series

∞∑
n=0

(−1)n x2n

22n (n!)2
.

Find the interval of convergence, which is also the domain.

Work:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1 x2n+2

22n+2 [(n + 1)!]2
· 22n (n!)2

(−1)n x2n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣ (−1) x2

4 (n + 1)2

∣∣∣∣
=

x2

4
lim

n→∞

1
4 (n + 1)2

= 0 < 1

So the radius of convergence is infinite (all x), thus the domain of the Bessel function order
zero is R, that is the interval of convergence is R.

4. Determine the radius of convergence for

(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · · =

∞∑
n=1

(−1)n−1 (x− 1)n

n
.

Work:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣(−1)n (x− 1)n+1

n + 1
÷ (−1)n−1 (x− 1)n

n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(−1)n (x− 1)n+1

n + 1
· n

(−1)n−1 (x− 1)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣(−1) (x− 1) n

n + 1

∣∣∣∣
= |x− 1| lim

n→∞

∣∣∣∣ n

n + 1

∣∣∣∣ = |x− 1| < 1

This power series converges for |x− 1| < 1 (i.e. 0 < x < 2) and diverges for |x− 1| > 1.
If we check the endpoints we will see that the series converges for 0 < x ≤ 2. The radius
of convergence is 1. You may recall that this is the series (centered at 1) for ln x.

5. Determine the radius of convergence for

x− x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=1

(−1)n−1 x2n−1

(2n− 1)!
.

3Daniel Bernoulli—the Swiss mathematician—defined defined and it was later generalized by the German
Friedrich Bessel.
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Work:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣(−1)n x2n+1

(2n + 1)!
÷ (−1)n−1 x2n−1

(2n− 1)!

∣∣∣∣∣
= lim

n→∞

∣∣∣∣(−1)n x2n+1

(2n + 1)!
· (2n− 1)!

(−1)n−1 x2n−1

∣∣∣∣
= lim

n→∞

∣∣∣∣ (−1) x2

2n (2n + 1)

∣∣∣∣
= x2 lim

n→∞

1
2n (2n + 1)

= 0 < 1

This power series converges for all x. The radius of convergence is infinite. You may recall
that this is the series for sin x.

6. Find the radius and interval of convergence of the series

1 + 22x2 + 24x4 + · · ·+ 22nx2n + · · ·

Work:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣22(n+1)x2(n+1)

22nx2n

∣∣∣∣∣
= lim

n→∞

∣∣4x2
∣∣

= 4x2 lim
n→∞

1 = 4x2 < 1

Hopefully you recall how to solve quadratic inequalities from MTH-119. That is, solving
4x2 < 1 and you’ll get −1/2 < x < 1/2. At both endpoints you will get a divergent series,
so the radius of convergence is 1/2, an the interval of convergence is −1/2 < x < 1/2.

7. Find the radius and interval of convergence of the series
∞∑

n=0

n (x + 2)n

3n+1
.

Work:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣(n + 1) (x + 2)n+1

3n+2
· 3n+1

n (x + 2)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣(n + 1) (x + 2)
3n

∣∣∣∣
=
|x + 2|

3
lim

n→∞

n + 1
n

=
|x + 2|

3
< 1

Hopefully you recall how to solve absolute valued inequalities from MTH-119. That is,
solving |x + 2| < 3 and you’ll get −5 < x < 1. At both endpoints you will get a divergent
series, so the radius of convergence is 3, an the interval of convergence is 5 < x < 1.
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