Name:

\qquad

Signature:

The following question is worth ten points total, and will be added to your WebAssign grades. Only correct answers will be accepted. Due date will be announce in class. ${ }^{2}$

1. When I ask my calculator to evaluate

$$
\begin{equation*}
\int_{2}^{12} \frac{1}{5 \sqrt{2 \pi}} e^{-\frac{(x-7)^{2}}{50}} \mathrm{~d} x \tag{1}
\end{equation*}
$$

I get an approximate answer,

$$
\int_{2}^{12} \frac{1}{5 \sqrt{2 \pi}} e^{-\frac{(x-7)^{2}}{50}} \mathrm{~d} x \approx 0.682689492137 .
$$

The Mathematica code for doing the integral above numerically, and then using a left endpoint approximation method with $n=1000$ is given below. This example code work will be of key importance if you decide to use Mathematica for this project-it actually contains the answer for the first question.

Figure 1: Sample Code

The following evaluations should be done using Mathematica or other CAS system, or using a structure ${ }^{3}$ programming language. I have included answers, so you just need to copy what I've done using whatever system you like. Again, please submit the code work!

[^0](a) Evaluate this integral (1) using the left endpoint approximation method with $n=1000$, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89.
i. $\frac{1}{5 \sqrt{2 \pi}} e^{-\frac{(x-7)^{2}}{50}} \rightarrow f(x)$
ii. $\frac{1}{100.0} \cdot \sum_{i=0}^{999} f\left(2.0+\frac{i}{100.0}\right) \approx 0.682689$
(b) Evaluate this integral (1) using the right endpoint approximation method with $n=1000$, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89.
i. $\frac{1}{5 \sqrt{2 \pi}} e^{-\frac{(x-7)^{2}}{50}} \rightarrow f(x)$
ii. $\frac{1}{100.0} \cdot \sum_{i=1}^{1000} f\left(2.0+\frac{i}{100.0}\right) \approx 0.682689$
(c) Evaluate this integral (1) using the midpoint rule method with $n=1000$, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89.
i. $\frac{1}{5 \sqrt{2 \pi}} e^{-\frac{(x-7)^{2}}{50}} \rightarrow f(x)$
ii. $\frac{1}{100.0} \cdot \sum_{i=1}^{1000} f\left(2.0+\frac{2 i-1}{200.0}\right) \approx 0.682690$
(d) Evaluate this integral (1) using the trapezoidal rule method with $n=1000$, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89.
i. $\frac{1}{5 \sqrt{2 \pi}} e^{-\frac{(x-7)^{2}}{50}} \rightarrow f(x)$
ii. $\frac{f(2.0)+f(12.0)}{200.0}+\frac{1}{100.0} \cdot \sum_{i=1}^{999} f\left(2.0+\frac{i}{100.0}\right) \approx 0.682689$
(e) Evaluate this integral (1) using the Simpson's rule method with $n=1000$, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89. ${ }^{4}$
i. $\frac{1}{5 \sqrt{2 \pi}} e^{-\frac{(x-7)^{2}}{50}} \rightarrow f(x)$
ii. $\frac{f(2)+f(12)}{300.0}+\frac{4}{300} \cdot \sum_{i=1}^{500} f\left(2+\frac{2 i-1}{100}\right)+\frac{2}{300} \cdot \sum_{i=1}^{499} f\left(2+\frac{2 i}{100}\right) \approx 0.682689$

[^1]
[^0]: ${ }^{1}$ This document was prepared by Ron Bannon (ron.bannon@mathography.org) using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$. Last revised January 10, 2009.
 ${ }^{2}$ Project questions are assigned on occasion, and have strict due dates that must be adhered to.
 ${ }^{3}$ Any language, but you must submit the code electronically in ASCII format.

[^1]: ${ }^{4}$ Notice that I am only use one number with a decimal point, this will force an approximation.

