Name: _____

Signature:

The following question is worth ten points total, and will be added to your WebAssign grades. Only correct answers will be accepted. Due date will be announce in class.²

1. When I ask my calculator to evaluate

$$\int_{2}^{12} \frac{1}{5\sqrt{2\pi}} e^{-\frac{(x-7)^2}{50}} \,\mathrm{d}x \tag{1}$$

I get an approximate answer,

$$\int_{2}^{12} \frac{1}{5\sqrt{2\pi}} e^{-\frac{(x-7)^2}{50}} \, \mathrm{d}x \approx \boxed{0.682689492137}.$$

The Mathematica code for doing the integral above numerically, and then using a **left** endpoint approximation method with n = 1000 is given below. This example code work will be of key importance if you decide to use Mathematica for this project—it actually contains the answer for the first question.

00	Mathematica.nb	\bigcirc
ln[10]:= f [:	x_] := 1 / 5 / Sqrt[2 * π] * Exp[-(x - 7) ² / 50]	Ľ
In[11]:= NT	ntegrate[f[x], {x, 2, 12}]	ןנ
Out[11]= 0.0	582689	LE
ln[12]:= 1 /	100.0 * Sum[f[2 + i / 100], {i, 0, 999}]	רנ
Out[12]= 0.0	582689	E
	100% + -)+/

Figure 1: Sample Code

The following evaluations should be done using Mathematica or other CAS system, or using a structure³ programming language. I have included answers, so you just need to copy what I've done using whatever system you like. Again, *please submit the code work!*

¹This document was prepared by Ron Bannon (ron.bannon@mathography.org) using $\text{ETEX} 2\varepsilon$. Last revised January 10, 2009.

²Project questions are assigned on occasion, and have strict due dates that must be adhered to.

³Any language, but you must submit the code electronically in ASCII format.

(a) Evaluate this integral (1) using the **left endpoint approximation** method with n = 1000, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89.

i.
$$\frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-7)^2}{50}} \to f(x)$$

ii. $\frac{1}{100.0} \cdot \sum_{i=0}^{999} f\left(2.0 + \frac{i}{100.0}\right) \approx \boxed{0.682689}$

(b) Evaluate this integral (1) using the **right endpoint approximation** method with n = 1000, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89.

i.
$$\frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-7)^2}{50}} \to f(x)$$

ii. $\frac{1}{100.0} \cdot \sum_{i=1}^{1000} f\left(2.0 + \frac{i}{100.0}\right) \approx \boxed{0.682689}$

(c) Evaluate this integral (1) using the **midpoint rule** method with n = 1000, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89.

i.
$$\frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-7)^2}{50}} \to f(x)$$

ii. $\frac{1}{100.0} \cdot \sum_{i=1}^{1000} f\left(2.0 + \frac{2i-1}{200.0}\right) \approx \boxed{0.682690}$

(d) Evaluate this integral (1) using the **trapezoidal rule** method with n = 1000, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89.

i.
$$\frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-7)^2}{50}} \to f(x)$$

ii. $\frac{f(2.0) + f(12.0)}{200.0} + \frac{1}{100.0} \cdot \sum_{i=1}^{999} f\left(2.0 + \frac{i}{100.0}\right) \approx \boxed{0.682689}$

(e) Evaluate this integral (1) using the **Simpson's rule** method with n = 1000, final answer should be accurate to six decimal places of accuracy.

Here's what I did on a TI-89.⁴
i.
$$\frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-7)^2}{50}} \to f(x)$$

ii. $\frac{f(2) + f(12)}{300.0} + \frac{4}{300} \cdot \sum_{i=1}^{500} f\left(2 + \frac{2i-1}{100}\right) + \frac{2}{300} \cdot \sum_{i=1}^{499} f\left(2 + \frac{2i}{100}\right) \approx \boxed{0.682689}$

⁴Notice that I am only use one number with a decimal point, this will force an *approximation*.