MTH 122 - Calculus II

Essex County College - Division of Mathematics and Physics ${ }^{1}$
 Project \#3 - Sakai Web Project Material

Name:

\qquad

Signature:

The following question is worth ten points total, and will be added to your WebAssign grades. Only correct answers will be accepted. Due date will be announce in class. ${ }^{2}$

A student came to me the other day with this question, find the exact value of:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} .
$$

I looked at it, and was perplexed. ${ }^{3}$ So I decided to use my calculator to find an approximation. I also used Mathematica to see if it knew the answer, surprisingly it did. Then, as I suspected from the get-go, I knew it could be done.

Answer the following questions.

1. Use a computer to calculate (20 decimal places!)

$$
\sum_{n=0}^{1000} \frac{(-1)^{n}}{2 n+1}
$$

Solution: I am using Mathematica

$$
\sum_{n=0}^{1000} \frac{(-1)^{n}}{2 n+1}=0.78564791358488576273
$$

2. Use Mathemtica (exact value computation) to calculate

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

Solution: I am using Mathematica

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\frac{\pi}{4}
$$

[^0]3. Look back over your notes to see if I gave you this power series (I did) and then show that Mathematica's results are true.

Work: On sheet 12, page 5, I gave you

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \quad-1 \leq x \leq 1
$$

Using this with $x=1$ in this power series, I get.

$$
\arctan 1=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\frac{\pi}{4}
$$

[^0]: ${ }^{1}$ This document was prepared by Ron Bannon (ron.bannon@mathography.org) using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$. Last revised April 7, 2009.
 ${ }^{2}$ Project questions are assigned on occasion, and have strict due dates that must be adhered to.
 ${ }^{3}$ Okay, I must be getting old.

