Name: \qquad

Signature:

\qquad

Show all work clearly and in order, and box your final answers. Justify your answers whenever possible. You have 20 minutes to take this 10 point quiz.

The number π is often approximated, and many students believe that π can be written down in some numerical form, usually as a decimal. Some say it's about 3 while others might go on to say 3.14 , or possibly something more precise. Of special note is Akira Haraguchi, a mental health counsellor from Japan, that can recite than 100,000 decimal digits of π from memory. However, no matter how precise you go, they're all just approximations.

One can find many exact expressions that equal π. For example

$$
\begin{aligned}
\pi & =2\left(\frac{2 \times 2 \times 4 \times 4 \times 6 \times 6 \times 8 \times \ldots}{1 \times 3 \times 3 \times 5 \times 5 \times 7 \times 7 \times \ldots}\right) \\
& =4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots\right) \\
& =\sqrt{\frac{6}{1^{2}}+\frac{6}{2^{2}}+\frac{6}{3^{2}}+\frac{6}{4^{2}}+\ldots} \\
& =3\left(1+\frac{1^{2}}{4 \times 6}+\frac{1^{2} \times 3^{2}}{4 \times 6 \times 8 \times 10}+\frac{1^{2} \times 3^{2} \times 5^{2}}{4 \times 6 \times 8 \times 10 \times 12 \times 14}+\ldots\right)
\end{aligned}
$$

However, I think the most remarkable formula for the computation of π has got to be from India. Read on ...

1. Around 1910, the Indian mathematician Srinivasa Ramanujan discover the formula

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}
$$

William Gosper (he's from New Jersey) used this series in 1985 to compute the first seventeen million digits of π.
(a) 5 points Verify that this series is convergent.

Solution: Using the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(4 n+4)!(1103+26390 n+26390)}{[(n+1)!]^{4} 396^{4 n+4}} \cdot \frac{(n!)^{4} 396^{4 n}}{(4 n)!(1103+26390 n)}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(4 n+4)(4 n+3)(4 n+2)(4 n+1)(27493+26390 n)}{(n+1)(n+1)(n+1)(n+1) 396^{4}(1103+26390 n)}\right| \\
& =\frac{4^{4}}{396^{4}}<1
\end{aligned}
$$

So the series converges by the Ratio Test.
(b) 5 points How many correct decimal places of π do you get if you just use the first term of the series? What if you use two terms?

Solution: 3.14159265358979323846264338328 is what I got when I asked Mathematica to compute π to thirty places of accuracy. Using the first term of Ramanujan's series I get:

$$
\left[\frac{2 \sqrt{2}}{9801} \cdot 1103\right]^{-1} \approx 3.14159273001
$$

which is accurate to the sixth decimal place. Using the first two terms of Ramanujan's series I get:

$$
\left[\frac{2 \sqrt{2}}{9801} \cdot\left(1103+\frac{4!(27493)}{396^{4}}\right)\right]^{-1} \approx 3.141592653589793878
$$

which is accurate to the fifteen decimal place. Your accuracy may differ, depending on what you're using to calculate. ${ }^{1}$ For example, a handheld calculator should be able to do the first term without trouble, but the two-termed expression may differ from what is presented here. However the point is that this is a really good approximation and the series appears to converge very quickly. I guess that's why William Gosper used it.

