Name: \qquad
Signature: \qquad

Show all work clearly and in order, and box your final answers. Justify your answers whenever possible. You have 20 minutes to take this 10 point quiz.

1. 5 points Given a differential equation of the form

$$
y^{\prime}=k x y^{2},
$$

find the constant k such that

$$
y=\frac{1}{x^{2}+5}
$$

is a solution to this differential equation.

Solution: First find y^{\prime}

$$
y^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{1}{x^{2}+5}\right]=-\frac{2 x}{\left(x^{2}+5\right)^{2}},
$$

and then see what k is in the differential equation,

$$
\begin{aligned}
y^{\prime} & =k x y^{2} \\
-\frac{2 x}{\left(x^{2}+5\right)^{2}} & =k x\left(\frac{1}{x^{2}+5}\right)^{2} \\
k & =-2
\end{aligned}
$$

2. 5 points Consider the initial value problem

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x\left(1+y^{2}\right)}{2}, \quad y(0)=1
$$

Sketch the solution to this initial value problem, and use your sketch to estimate y (1). Also, given that

$$
y(x)=\tan \left(\frac{x^{2}}{4}+\frac{\pi}{4}\right)
$$

is a solution to this differential equation, estimate the true value of $y(1)$.

Figure 1: Direction field.

Solution: My sketch may be better than yours (I'm using software). From my graph I get $y(1)=1.7$. Using the formula provided,

$$
y(1)=\tan \left(\frac{1}{4}+\frac{\pi}{4}\right) \approx 1.68579641717 .
$$

Not bad.

