Name: \qquad
Signature: \qquad

Show all work clearly and in order, and box your final answers. Justify your answers whenever possible. You have 20 minutes to take this 10 point quiz.

1. Given

$$
\int_{0}^{5} \frac{4 x}{\sqrt{x^{4}+1}} \mathrm{~d} x
$$

and the following graph of this area.

Figure 1: Area of interest.

Find the following.
(a) 9 points Evaluate (exact answer) the integral by initially using a simple u-substitution ${ }^{1}$ followed by a trigonometric substitution. ${ }^{2}$

Solution: First let $u=x^{2}$, then $\mathrm{d} u=2 x \mathrm{~d} x$.

$$
\int_{0}^{5} \frac{4 x}{\sqrt{x^{4}+1}} \mathrm{~d} x=2 \int_{0}^{25} \frac{1}{\sqrt{u^{2}+1}} \mathrm{~d} u
$$

[^0]Now use $u=\tan \theta$, then $\mathrm{d} u=\sec ^{2} \theta \mathrm{~d} \theta$.

$$
\begin{aligned}
2 \int_{0}^{25} \frac{1}{\sqrt{u^{2}+1}} \mathrm{~d} u & =2 \int_{0}^{\arctan 25} \frac{1}{\sqrt{\tan ^{2} \theta+1}} \sec ^{2} \theta \mathrm{~d} \theta \\
& =2 \int_{0}^{\arctan 25} \sec \theta \mathrm{~d} \theta \\
& =2 \ln |\sec \theta+\tan \theta|]_{0}^{\arctan 25}=2 \ln (\sqrt{626}+25)
\end{aligned}
$$

(b) 1 point For this integral, Mathematica returns $2 \sinh ^{-1} 25$. Is your answer equivalent? 3

Solution: Yes, here's why. Recall ${ }^{4}$ from the worksheet on hyperbolic functions that $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$.

$$
2 \sinh ^{-1} 25=2 \ln (25+\sqrt{626})
$$

If you used your calculator you'd also see ${ }^{5}$ that

$$
2 \sinh ^{-1} 25-2 \ln (25+\sqrt{626})=0
$$

[^1]
[^0]: ${ }^{1} u=x^{2}$
 ${ }^{2} u=\tan \theta$

[^1]: ${ }^{3}$ You may use a calculator.

