Name:

Signature:

Show all work clearly and in order, and box your final answers. Justify your answers whenever possible. You have 20 minutes to take this 10 point quiz.

1. Given

$$\int_0^5 \frac{4x}{\sqrt{x^4 + 1}} \, \mathrm{d}x,$$

and the following graph of this area.

Figure 1: Area of interest.

Find the following.

(a) $\boxed{9 \text{ points}}$ Evaluate (exact answer) the integral by initially using a simple u-substitution¹ followed by a trigonometric substitution.²

Solution: First let $u = x^2$, then du = 2x dx.

$$\int_0^5 \frac{4x}{\sqrt{x^4 + 1}} \, \mathrm{d}x = 2 \int_0^{25} \frac{1}{\sqrt{u^2 + 1}} \, \mathrm{d}u$$

 $u = \overline{x^2}$

 $^{^2}u=\tan\theta$

Now use $u = \tan \theta$, then $du = \sec^2 \theta \ d\theta$.

$$2\int_{0}^{25} \frac{1}{\sqrt{u^{2}+1}} du = 2\int_{0}^{\arctan 25} \frac{1}{\sqrt{\tan^{2}\theta+1}} \sec^{2}\theta d\theta$$

$$= 2\int_{0}^{\arctan 25} \sec\theta d\theta$$

$$= 2\ln|\sec\theta+\tan\theta||_{0}^{\arctan 25} = 2\ln(\sqrt{626}+25)$$

(b) $\boxed{1 \text{ point}}$ For this integral, Mathematica returns $2 \sinh^{-1} 25$. Is your answer equivalent?³

Solution: Yes, here's why. Recall⁴ from the worksheet on hyperbolic functions that $\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1})$.

$$2\sinh^{-1}25 = 2\ln\left(25 + \sqrt{626}\right)$$

If you used your calculator you'd also see⁵ that

$$2\sinh^{-1}25 - 2\ln\left(25 + \sqrt{626}\right) = 0.$$

³You may use a calculator.