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1. Consider the three infinite series below.

(i)
∞∑
n=1

(−1)n−1

5n
(ii)

∞∑
n=1

(n+ 1) (n2 − 1)

4n3 − 2n+ 1
(iii)

∞∑
n=1

5 (−4)n+2

32n+1

(a) Which of these series is (are) alternating?

Solution: Clearly series (i) and (iii) . It is not necessary to expand to see that

they are alternating.

(b) Which one of these series diverges, and why?

Solution: Series (ii) . To show this, just show that the limit of the nth term as

n→∞ is not equal to zero.

lim
n→∞

(n+ 1) (n2 − 1)

4n3 − 2n+ 1
= lim

n→∞

n3 + n2 − n− 1

4n3 − 2n+ 1

= lim
n→∞

1 + 1/n− 1/n2 − 1/n3

4− 2/n2 + 1/n3
=

1

4
6= 0

(c) One of these series converges absolutely. Which one? Compute its sum.

Solution: Series (iii) coverges absolutely, and its sum is given by the geometric
series.

∞∑
n=1

5 (−4)n+2

32n+1
=

∞∑
n=1

80 (−4)n

3 · 9n

=
80

3
·
∞∑
n=1

(
−4

9

)n
=

80

3
·

[(
−4

9

)
+

(
−4

9

)2

+

(
−4

9

)3

+ · · ·

]

= −320

27
·

[
1 +

(
−4

9

)
+

(
−4

9

)2

+ · · ·

]

= −320

27
· 1

1 + 4/9
= −320

27
· 9

9 + 4
= −320

27
· 9

13
= −320

39
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2. Given that the function

f (x) =
∞∑
n=0

(−1)n x2n

(2n)!
,

is a solution to the differential equation

f ′′ (x) + f (x) = 0.

Answer the following questions.

(a) Find f ′ (x).

Solution:

f (x) =
∞∑
n=0

(−1)n x2n

(2n)!

f (x) = 1− x2

2!
+
x4

4!
− · · ·

f ′ (x) = 0− x

1!
+
x3

3!
− x5

5!
+ · · ·

f ′ (x) =
∞∑
n=1

(−1)n x2n−1

(2n− 1)!

(b) Find f ′′ (x).

Solution:

f ′ (x) =
∞∑
n=1

(−1)n x2n−1

(2n− 1)!

f ′ (x) = − x
1!

+
x3

3!
− x5

5!
+ · · ·

f ′′ (x) = −1 +
x2

2!
− x4

4!
+ · · ·

f ′′ (x) =
∞∑
n=0

(−1)n+1 x2n

(2n)!

(c) Expand both f and f ′′ and then substitute into the differential equation

f ′′ (x) + f (x) = 0,

to verify that it is a solution.
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Solution:

0 = f ′′ (x) + f (x)

0 =
∞∑
n=0

(−1)n+1 x2n

(2n)!
+
∞∑
n=0

(−1)n x2n

(2n)!

0 =

(
−1 +

x2

2!
− x4

4!
+ · · ·

)
+

(
1− x2

2!
+
x4

4!
− · · ·

)
0 = 0

3. Given ∫ 1

−1

√
1 + x

1− x
dx,

and the following graph.

-1 0 1

1

2

3

Figure 1: Partial graph of y =

√
1 + x

1− x
and x = 1.

(a) Why is this an improper integral?

Solution: At x = 1 it is undefined.

(b) Show that √
1 + x

1− x
=

1 + x√
1− x2

,

if −1 < x < 1.

Solution: √
1 + x

1− x
·
√

1 + x√
1 + x

=
1 + x√
1− x2

Or, if you prefer.

1 + x√
1− x2

=
1 + x√

(1 + x) (1− x)
=

√
1 + x

1− x
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(c) Use √
1 + x

1− x
=

1 + x√
1− x2

=
1√

1− x2
+

x√
1− x2

,

to evaluate ∫ √
1 + x

1− x
dx.

Solution: ∫ √
1 + x

1− x
dx =

∫
1 + x√
1− x2

dx

=

∫
1√

1− x2
dx+

∫
x√

1− x2
dx

= arcsinx−
√

1− x2 + C

(d) Evaluate ∫ 1

−1

√
1 + x

1− x
dx.

Solution:

lim
a→1−

∫ a

−1

√
1 + x

1− x
dx = lim

a→1−

(
arcsinx−

√
1− x2

)]a
−1

= lim
a→1−

[
arcsin a−

√
1− a2

]
− arcsin (−1)

= arcsin 1− arcsin (−1)

=
π

2
−
(
−π

2

)
= π

4. Integrate. ∫ 1

−1

2x3 − 4x2 − 15x+ 5

x2 − 2x− 8
dx.

Solution: First you’ll need to long divide.

2x3 − 4x2 − 15x+ 5

x2 − 2x− 8
= 2x+

x+ 5

x2 − 2x− 8
.

Then use partial fractions to get

2x3 − 4x2 − 15x+ 5

x2 − 2x− 8
= 2x+

x+ 5

x2 − 2x− 8
= 2x+

3/2

x− 4
− 1/2

x+ 2
.
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Now integrate.∫ 1

−1

2x3 − 4x2 − 15x+ 5

x2 − 2x− 8
dx =

∫ 1

−1

2x+
3/2

x− 4
− 1/2

x+ 2
dx

= x2 +
3

2
ln |x− 4| − 1

2
ln |x+ 2|

]1

−1

= ln
3

5
√

5

5. Given a differential equation of the form

y′ = kxy2,

find the constant k such that

y =
1

x2 + 5

is a solution to this differential equation.

Solution: First find y′

y′ =
d

dx

[
1

x2 + 5

]
= − 2x

(x2 + 5)2 ,

and then see what k is in the differential equation,

y′ = kxy2

− 2x

(x2 + 5)2 = kx

(
1

x2 + 5

)2

k = −2

6. Use integration by parts to evaluate∫ 2

1

x3 lnx dx.

Solution: Starting with,

u = lnx and dv = x3 dx,
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then,

du =
1

x
dx and v =

x4

4
.

Now carefully using these parts we finally have.∫ 2

1

x3 lnx dx =
x4 lnx

4

]2

1

− 1

4

∫ 2

1

1

x
· x

4

4
dx

=
x4 lnx

4

]2

1

− 1

4

∫ 2

1

x3 dx

=
x4 lnx

4
− x4

16

]2

1

= ln 16− 15

16

7. Euler’s identity is helpful when dealing with complex numbers, it states that for any
real number θ,

eiθ = cos θ + i sin θ.

You should know from basic algebra how to raise i (where
√
−1 = i) to a natural number

power. Here’s a short list:

i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, i7 = −i, . . . .

Let’s use our series expansion for ex, but this time let’s replace x by iθ and see if you
can get Euler’s identity by doing this. Use this identity to find out a simple form (it’s
a very simple and important number) for eiπ.

Solution:

eθ = 1 + θ +
θ2

2!
+
θ3

3!
+
θ4

4!
+
θ5

5!
+ · · ·

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

= 1 + iθ − θ2

2!
− iθ

3

3!
+
θ4

4!
+ i

θ5

5!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
= cos θ + i sin θ

Using Euler’s identity with θ = π we get:

eiπ = cos π + i sin π

eiπ = −1 + i · 0
eiπ = −1
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This, of course leads to a very important relationship between π, 1, 0, e and i, namely

eiπ + 1 = 0 .

These five numbers are often referred to as the five most important numbers in mathe-
matics. [Hate to sound biased, but these numbers are really in a class by themselves. In
a way, numbers are polytheistic, and these five numbers stand equally above all others.]
When I travel I almost always visit cultural centers where people are asked to leave
a comment in a guest book, and I often leave eiπ + 1 = 0 because those symbols are
universally understood by educated people. Once I saw it crossed off (with a comment
stating that it was not true), I guess because it offended someone. Anyway, I just
might start leaving 1 = 0.999 which probably appears equally offensive—I know it once
offended me when I first saw calculus.

8. Evaluate.1 You must show work! ∫ 4

1

sin
√
x dx

Solution: Taking the hint.

u =
√
x ⇒ du =

1

2
√
x

dx ⇒ du =
1

2u
dx ⇒ 2u du = dx

Here’s goes. ∫ 4

1

sin
√
x dx = 2

∫ 2

1

u sinu du

Now here’s the parts.

v = u ⇒ dv = du and sinu du = dw ⇒ − cosu = w

Here goes. ∫ 4

1

sin
√
x dx = 2

∫ 2

1

u sinu du

= −2u cosu ]21 + 2

∫ 2

1

cosu du

= −2u cosu+ 2 sinu ]21

= −4 cos 2 + 2 sin 2 + 2 cos 1− 2 sin 1

1First make a simple u-substitution where u =
√

x, then use integration by parts.
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9. The generalized Binomial Theorem was discovered by Isaac Newton around 1665,
and you probably learned the Binomial Theorem in pre-calculus. It was probably
introduced as an expansion of (a+ b)n.

(a+ b)n = an + k1a
n−1b+ k2a

n−2b2 + k3a
n−3b3 + · · ·+ kn−2a

2bn−2 + kn−1ab
n−1 + bn.

The pattern should be easy to follow, but the constants ki are in fact difficult to compute.
After some thought though, most students can figure out that these coefficients form a
pattern for n ∈ Z+. As you may recall, the coefficients of the binomial expansion can
be computed using this formula:

nCr =

(
n
r

)
=

n!

(n− r)!r!
,

where n represents the degree (row in Pascal’s Triangle) and r represents the position
starting with 0 and ending with n in each expansion. The generalized Binomial

Theorem does not limit the power to being an integer though. We will be using the
Taylor series to develop the generalized Binomial Theorem which states for any
exponent a ∈ R, integer n ≥ 0, and |x| < 1:

(1 + x)a = 1 + ax+
a (a− 1)

2!
x2 +

a (a− 1) (a− 2)

3!
x3 + · · ·+

(
a
n

)
xn + · · ·

Here we need to define the binomial coefficient(
a
n

)
=
a (a− 1) (a− 2) · · · (a− n+ 1)

n!
.

For example (
4/3
3

)
=

4/3 · (4/3− 1) (4/3− 2)

3!
= − 4

81
.

So now, with what you know about Taylor series, try to develop the generalized Bi-
nomial Theorem.

(a) Repeatedly take derivatives of

f (x) = (1 + x)a ,

and try to find a simple pattern for the nth derivative.

Solution:

f (x) = (1 + x)a

f ′ (x) = a (1 + x)a−1

f ′′ (x) = a (a− 1) (1 + x)a−2

f ′′′ (x) = a (a− 1) (a− 2) (1 + x)a−3

... =
...

f (n) (x) = a (a− 1) (a− 2) · · · (a− n+ 1) (1 + x)a−n
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(b) Now we need to evaluate these derivatives at x = 0, and derive the Taylor series
using this information.

Solution:

f (0) = 1

f ′ (0) = a

f ′′ (0) = a (a− 1)

f ′′′ (0) = a (a− 1) (a− 2)
... =

...

f (n) (0) = a (a− 1) (a− 2) · · · (a− n+ 1)

So the general coefficient of the Taylor series is

f (n) (0)

n!
=
a (a− 1) (a− 2) · · · (a− n+ 1)

n!

The result being:

(1 + x)a = 1 + ax+
a (a− 1)

2!
x2 +

a (a− 1) (a− 2)

3!
x3 + · · ·+

(
a
n

)
xn + · · ·

=
∞∑
n=0

f (n) (0)

n!
xn

10. Find the area of the region bounded by the given curves.

y = xe−0.4x, y = 0, x = 5

Solution: I am using integration by parts with u = x and e−0.4x dx = dv.∫ 5

0

xe−0.4x dx = − 5x

2e0.4x

]5

0

+
5

2

∫ 5

0

e−0.4x dx

= − 5x

2e0.4x
− 25

4e0.4x

]5

0

= − 25

2e2
− 25

4e2
+

25

4

=
25e2 − 75

4e2
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0 1 2 3 4 5

1

Figure 2: Area of interest.

Here’s the graph.

11. Make a substitution to express the integral as a rational function and then evaluate the
integral. ∫ 16

9

√
x

x− 4
dx

Solution: Let u2 = x, and for x > 0 we also have u =
√
x, furthermore 2u du = dx.∫ 16

9

√
x

x− 4
dx =

∫ 4

3

2u2

u2 − 4
du

=

∫ 4

3

2 +
8

u2 − 4
du

=

∫ 4

3

2− 2

u+ 2
+

2

u− 2
du

= 2u− 2 ln |u+ 2|+ 2 ln |u− 2|
]4

3

= 2u+ 2 ln

∣∣∣∣u− 2

u+ 2

∣∣∣∣]4

3

=

[
8 + ln

(
1

9

)]
−
[
6 + ln

(
1

25

)]
= 2 + ln

(
25

9

)
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12. Evaluate the integral. ∫ 1

0

y

e2y
dy

Solution: Using integration by parts with u = y and e−2y dy = dv.∫ 1

0

y

e2y
dy =

∫ 1

0

ye−2y dy

= − y

2e2y

]1
0

+
1

2

∫ 1

0

e−2y dy

= − y

2e2y
− 1

4e2y

]1

0

= − 1

2e2
− 1

4e2
+

1

4

=
e2 − 3

4e2

13. Given that

f (x) =
1

(1− x) (1− 2x)
=

2

1− 2x
− 1

1− x
.

Try to find a power series for f (x) and its interval of convergence.

Solution: You should note that we’ll be using

1

1− x
= 1 + x+ x2 + · · · ,

and

2

1− 2x
= 2

[
1

1− (2x)

]
= 2

[
1 + 2x+ 4x2 + 8x3 + · · ·+ (2x)n + · · ·

]
= 2 + 4x+ 8x2 + 16x3 + · · ·+ 2 (2x)n + · · ·

so

2

1− 2x
− 1

1− x
=

[
2 + 4x+ 8x2 + 16x3 + · · ·+ 2 (2x)n + · · ·

]
−
[
1 + x+ x2 + · · ·

]
= 1 + 3x+ 7x2 + 15x3 + · · ·+

(
2n+1 − 1

)
xn + · · ·

=
∞∑
n=0

(
2n+1 − 1

)
xn

Using the Ratio Test the interval of convergence is (−1/2, 1/2).
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14. Evaluate (exact answer) without using a computer.∫ π/2

π/4

cot3 x dx

Solution: On line (4) I am using u = cscx on the first integral and u = sinx on the
second integral.∫ π/2

π/4

cot3 x dx =

∫ π/2

π/4

cotx
(
cot2 x

)
dx (1)

=

∫ π/2

π/4

cotx
(
csc2 x− 1

)
dx (2)

=

∫ π/2

π/4

cotx csc2 x dx−
∫ π/2

π/4

cotx dx (3)

=

∫ π/2

π/4

cotx cscx cscx dx−
∫ π/2

π/4

cosx

sinx
dx (4)

=

(
−1

2
csc2 x− ln |sinx|

)]π/2
π/4

(5)

=
1− ln 2

2
(6)

15. Find the sum of
∞∑
n=1

kn−1

(n− 1)!
e−k.

Solution: Expanding, we have

∞∑
n=1

kn−1

(n− 1)!
e−k = e−k

[
1 + k +

k2

2!
+
k3

3!
+
k4

4!
+
k5

5!
+
k6

6!
+ · · ·

]
= e−k

[
ek
]

= 1
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16. Evaluate the Integral. ∫
x+ 4

x2 + 2x+ 5
dx

Solution: This is an irreducible quadratic factor. Let’s work on the rational expression
first.

x+ 4

x2 + 2x+ 5
=

1

2
· 2x+ 2

x2 + 2x+ 5
+

3

x2 + 2x+ 5

=
1

2

2x+ 2

x2 + 2x+ 5
+

3

(x+ 1)2 + 4

=
1

2
· 2x+ 2

x2 + 2x+ 5
+

3

4
· 1

[(x+ 1) /2]2 + 1

So the integration becomes:∫
x+ 4

x2 + 2x+ 5
dx =

1

2
·
∫

2x+ 2

x2 + 2x+ 5
dx+

3

4
·
∫

1

[(x+ 1) /2]2 + 1
dx

Now let’s do one integration at a time. For

1

2
·
∫

2x+ 2

x2 + 2x+ 5
dx,

let u = x2 + 2x+ 5 and then du = (2x+ 2) dx, resulting in:

1

2
·
∫

2x+ 2

x2 + 2x+ 5
dx =

1

2
·
∫ ∗ 1

u
du =

1

2
ln |u|+ C1 = ln

√
x2 + 2x+ 5 + C1.

The second integration
3

4
·
∫

1

[(x+ 1) /2]2 + 1
dx,

requires that we let u = (x+ 1) /2 and then 2du = dx, resulting in:

3

4
·
∫

1

[(x+ 1) /2]2 + 1
dx =

3

2
·
∫

1

u2 + 1
du = arctanu+C2 =

3

2
arctan

(
x+ 1

2

)
+C2.

Combining the two we finally have:∫
x+ 4

x2 + 2x+ 5
dx = ln

√
x2 + 2x+ 5 +

3

2
arctan

(
x+ 1

2

)
+ C

Page 13 of 24



Calculus II
MTH-122

Essex County College
Division of Mathematics

Sakai Web Project
Final Review Exam

17. Find the radius of convergence and the interval of convergence for the following power
series:

∞∑
n=1

n!xn

1 · 3 · 5 · · · · · (2n− 1)
.

Solution: Using the Ratio Test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)!xn+1

1 · 3 · 5 · · · · · (2n− 1) · (2n+ 1)
· 1 · 3 · 5 · · · · · (2n− 1)

n!xn

∣∣∣∣
= lim

n→∞

∣∣∣∣(n+ 1)x

(2n+ 1)

∣∣∣∣
=
|x|
2

So by the Ratio Test, the series converges for |x| < 2, so the radius of convergence is 2 .
To find the interval of convergence we need to test the endpoints ±2. When x = 2 we
get

an =
n!2n

1 · 3 · 5 · 7 · · · · · (2n− 1)

=
1 · 2 · 3 · 4 · · · · · n · 2n

1 · 3 · 5 · 7 · · · · · (2n− 1)

=
2 · 4 · 6 · 8 · · · · · 2n

1 · 3 · 5 · 7 · · · · · (2n− 1)

=

(
2

1

)
·
(

4

3

)
·
(

6

5

)
·
(

8

7

)
· · · · ·

(
2n

2n− 1

)
I think it is obvious that an > 1 for all n. Now if we were to use x = −2 we can still
state that |an| > 1 for all n. So we have

lim
n→∞

|an| 6= 0,

and using the Test for Divergence we can state that the series diverges for x = ±2,

so the interval of convergence is (−2, 2) .
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18. For what values of p is the series convergent?
∞∑
n=2

(−1)n−1 (lnn)p

n

Solution: First off, if p = 0 we have an alternating harmonic series which is convergent.
If p < 0 we clearly have the an’s decreasing as n increases. If p > 0 we need to let

f (x) =
(lnx)p

x
,

and its derivative is

f ′ (x) =
(lnx)(p−1) (p− lnx)

x2
.

Now, if x > ep, then f ′ (x) < 0. So, for n ≥ depe,∣∣∣∣(−1)n−1 (lnn)p

n

∣∣∣∣
is decreasing. Using the Alternating Series Test, we can state that

∞∑
n=2

(−1)n−1 (lnn)p

n

is convergent for all p .

19. For which positive integers k is the following series convergent?
∞∑
n=1

(n!)2

(kn)!

Solution: Using the Ratio Test, we have

lim
n→infty

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)! (n+ 1)!

(kn+ k)!
÷ (n!)2

(kn)!

= lim
n→∞

(n+ 1)! (n+ 1)!

(kn+ k)!
· (kn)!

(n!)2

= lim
n→∞

(n+ 1)2

(kn+ k) (kn+ k − 1) (kn+ k − 2) · · · · · (kn+ 1)

Okay, if k = 1 we have

lim
n→∞

(n+ 1)2

(n+ 1)
=∞,
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so the series diverges. If k = 2 we have

lim
n→∞

(n+ 1)2

(2n+ 2) (2n+ 1)
=

1

4
< 1

so the series converges. If k > 2 the degree of the denominator increases and the limit
is zero. So the series converges for k ≥ 2, where k ∈ Z .

20. Using what you already know2 about the Taylor series for ex.

(a) Find the Taylor series for

coshx =
ex + e−x

2
.

Solution: You should know, or be able to derive that

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

and is true for all x. Hence, using this expansion for ex you should be able to
simply derive that

e−x = 1− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
+ · · ·

for all x. Now adding ex and e−x together, we get

ex + e−x = 2 + 2 · x
2

2!
+ 2 · x

4

4!
+ 2 · x

6

6!
+ · · · .

Finally, dividing by 2, we have

coshx =
ex + e−x

2
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · · .

(b) Looking at the Taylor series for coshx, explain why it looks like a parabola near
x = 0. What is the equation of this parabola? Graph both coshx and the parabola
to see if it’s a good fit near zero.

Solution: For small x, the increasing degree terms play a minor role near zero ,

however, if we include the second degree term we can see the parabolic nature of
coshx. The parabola that best fits coshx near zero is

y = 1 +
x2

2!
.

2Please do not take derivatives.
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Here’s the partial graph.

-2 -1 0 1 2

1

2

3

Figure 3: Partial graph of both y = coshx (in black) and y = 1 + x2/2 (in red).

21. By looking at the Taylor series, decide which of the folowing functions is largest, and
which is smallest, for small positive θ.

1 + sin θ, cos θ,
1

1− θ2

Solution: Using what we already know. For example, using what you learned in pre-
calculus, especially about non-linear inequalities, might be insightful when looking at
these expansions.

1 + sin θ = 1 + θ − θ3

3!
+
θ5

5!
− θ7

7!
+
θ9

9!
− θ11

11!
+ · · ·

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+
θ8

8!
− θ10

10!
+ · · ·

1

1− θ2
= 1 + θ2 + θ4 + θ6 + θ10 + · · ·

Clearly 1 + sin θ is the largest amongst the three series when θ is positive and near

zero. Now looking at the remaining two series it is clear that cos θ is smallest . Here’s
a partial graph with the viewing window deliberately set to x ∈ [−0.0078, 0.3047] and
y ∈ [0.8945, 1.1117]. Again, please make every effort to learn how to use technology to
help visualize complicated graphs.
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0

1

Figure 4: y = 1 + sinx in red; y = cosx in black; y = (1− x2)
−1

in green.

22. Use a known series to evaluate

lim
x→0

sinx− x
x3

.

Solution:

sinx− x
x3

=
x− x3

3!
+
x5

5!
− · · · − x

x3

= − 1

3!
+
x2

5!
− x4

7!
+ · · ·

lim
x→0

sinx− x
x3

= lim
x→0

[
− 1

3!
+
x2

5!
− x4

7!
+ · · ·

]
= −1

6

23. Calculate
π

2
− π3

233!
+

π5

255!
− π7

277!
+ · · ·

Solution: This is the series for sine evaluated at π/2.

sin
π

2
=
π

2
− π3

233!
+

π5

255!
− π7

277!
+ · · · = 1
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24. Suppose you were given an infinite sequence of circles with the following radii:

1

2
,

1

4
,

1

8
, · · · ,

what is the total area of these circles?

Solution: This is an infinite geometric sum

π

(
1

2

)2

+ π

(
1

4

)2

+ π

(
1

8

)2

+ · · · = π

[
1

4
+

(
1

4

)2

+

(
1

4

)3

+ · · ·

]

= π · 1/4

1− 1/4
=

π

3

25. Find the sum of
∞∑
n=1

nxn−1

for |x| < 1.

Solution: Okay, this may be a tough one, especially if you were taking partial sums
and looking for patterns. However, this looks like it might be related to the following
Taylor series

1

1− x
= 1 + x+ x2 + x3 + x4 + · · · .

To see this relationship, take the derivative.

d

dx

[
1

1− x

]
=

d

dx

[
1 + x+ x2 + x3 + x4 + · · ·

]
1

(1− x)2 = 1 + 2x+ 3x2 + 4x3 + · · ·

1

(1− x)2 =
∞∑
n=1

nxn−1
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26. Consider the loop of the curve defined by

6y2 = x (2− x)2 .

A graph is provided. Find the area of the surface generated by rotating this loop about:

0 1 2

-1

1

Figure 5: Partial graph of 6y2 = x (2− x)2.

(a) x-axis;

Solution:∫ 2

0

2πy

√
1 +

(
dy

dx

)2

dx =

∫ 2

0

2π

[
(2− x)

√
x√

6

]√
1 +

(
2− 3x

2
√

6x

)2

dx

=

∫ 2

0

2π

[
(2− x)

√
x√

6

]√
9x2 + 12x+ 4

24x
dx

=

∫ 2

0

2π

[
(2− x)

√
x√

6

]√
(3x+ 2)2

24x
dx

=
π

6

∫ 2

0

(2− x) (3x+ 2) dx

=
π

6

∫ 2

0

4 + 4x− 3x2 dx

=
π

6

(
4x+ 2x2 − x3

)]2
0

=
4π

3
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(b) y-axis.

Solution:

2

∫ 2

0

2πx

√
1 +

(
dy

dx

)2

dx = 2

∫ 2

0

2πx

√
1 +

(
2− 3x

2
√

6x

)2

dx

= 2

∫ 2

0

2πx

√
9x2 + 12x+ 4

24x
dx

= 2

∫ 2

0

2πx

√
(3x+ 2)2

24x
dx

=
2π√

6

∫ 2

0

√
x (3x+ 2) dx

=
2π√

6

(
x3/2 (18x+ 20)

15

)]2

0

=
224π

15
√

3
=

224π
√

3

45

27. (a) Use differentiation of a known power series to find the power series representation
for

f (x) =
1

(1 + x)2 .

What is the radius of convergence?

Solution: You should note that we’ll be using

1

1− x
= 1 + x+ x2 + · · · ,

to start this problem off. A bit tricky, but here goes . . . .

f (x) =
1

(1 + x)2 = − d

dx

[
1

1− (−x)

]
= − d

dx

[
∞∑
n=0

(−1)n xn

]
= − d

dx

[
1− x+ x2 − x3 + · · ·

]
= 1− 2x+ 3x2 − 4x3 + · · ·

=
∞∑
n=0

(−1)n (n+ 1)xn

You can use the Ratio Test to show that the radius of convergence is R = 1 .

By the way, the interval of convergence is (−1, 1).
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(b) Use part (a) to find a power series for

f (x) =
1

(1 + x)3 .

What is the radius of convergence?

Solution:

f (x) =
1

(1 + x)3 = −1

2
· d

dx

[
1

(1 + x)2

]
= −1

2
· d

dx

[
∞∑
n=0

(−1)n (n+ 1)xn

]
= −1

2
· d

dx

[
1− 2x+ 3x2 − 4x3 + · · ·

]
= 1− 3x+ 6x2 − 10x3 + · · ·

=
∞∑
n=0

(−1)n (n+ 1) (n+ 2)

2
xn

You can use the Ratio Test to show that the radius of convergence is R = 1 .

By the way, the interval of convergence is (−1, 1).

(c) Use part (b) to find a power series for

f (x) =
x2

(1 + x)3 .

What is the radius of convergence?

Solution:

f (x) =
x2

(1 + x)3 = x2 ·
∞∑
n=0

(−1)n (n+ 1) (n+ 2)

2
xn

= x2
[
1− 3x+ 6x2 − 10x3 + · · ·

]
=

[
x2 − 3x3 + 6x4 − 10x5 + · · ·

]
=

∞∑
n=0

(−1)n (n+ 1) (n+ 2)

2
xn+2

You can use the Ratio Test to show that the radius of convergence is R = 1 .

By the way, the interval of convergence is (−1, 1).
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28. Consider the initial value problem

dy

dx
=
x (1 + y2)

2
, y (0) = 1.

Sketch the solution to this initial value problem, and use your sketch to estimate y (1).
Also, given that

y (x) = tan

(
x2

4
+
π

4

)
is a solution to this differential equation, estimate the true value of y (1).

-2 -1 0 1 2

1

2

3

Figure 6: Direction field.

Solution: My sketch may be better than yours (I’m using software). From my graph

I get y (1) = 1.7 . Using the formula provided,

y (1) = tan

(
1

4
+
π

4

)
≈ 1.68579641717 .

Not bad.
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-2 -1 0 1 2

1
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3

Figure 7: Direction field with solution.
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