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1.2
MATHEMATICAL MODELS:

A CATALOG OF

ESSENTIAL FUNCTIONS

In this section, we will learn about:

The purpose of mathematical models.

FUNCTIONS AND MODELS



A mathematical model is a mathematical

description—often by means of a function

or an equation—of a real-world phenomenon

such as:
! Size of a population

! Demand for a product

! Speed of a falling object

! Life expectancy of a person at birth

! Cost of emission reductions

MATHEMATICAL MODELS



The purpose of the model is to

understand the phenomenon and,

perhaps, to make predictions about

future behavior.

PURPOSE



The figure illustrates

the process of mathematical

modeling.

PROCESS



Given a real-world problem, our first

task is to formulate a mathematical

model.
! We do this by identifying and naming the

independent and dependent variables and

making assumptions that simplify the phenomenon

enough to make it mathematically tractable.

STAGE 1



We use our knowledge of the physical

situation and our mathematical skills to

obtain equations that relate the variables.
! In situations where there is no physical law to

guide us, we may need to collect data—from a library,

the Internet, or by conducting our own

experiments—and examine the data in the form

of a table in order to discern patterns.

STAGE 1



From this numerical representation

of a function, we may wish to obtain

a graphical representation by plotting

the data.
! In some cases, the graph might even suggest

a suitable algebraic formula.

STAGE 1



The second stage is to apply the mathematics

that we know—such as the calculus that

will be developed throughout this book—to

the model that we have formulated in order to

derive mathematical conclusions.

STAGE 2



In the third stage, we take those conclusions

and interpret them as information about the

original real-world phenomenon—by way of

offering explanations or making predictions.

STAGE 3



The final step is to test our predictions

by checking against new real data.
! If the predictions don’t compare well with reality,

we need to refine our model or to formulate

a new model and start the cycle again.

STAGE 4



A mathematical model is never a

completely accurate representation of a

physical situation—it is an idealization.
! A good model simplifies reality enough to permit

mathematical calculations, but is accurate enough

to provide valuable conclusions.

! It is important to realize the limitations of the model.

! In the end, Mother Nature has the final say.

MATHEMATICAL MODELS



There are many different types of

functions that can be used to model

relationships observed in the real world.
! In what follows, we discuss the behavior and

graphs of these functions and give examples

of situations appropriately modeled by such

functions.

MATHEMATICAL MODELS



When we say that y is a linear

function of x, we mean that the graph

of the function is a line.
! So, we can use the slope-intercept form of

the equation of a line to write a formula for

the function as

where m is the slope of the line and b is

the y-intercept.

( )y f x mx b= = +

LINEAR MODELS



A characteristic feature of

linear functions is that they grow

at a constant rate.

LINEAR MODELS



For instance, the figure shows a graph

of the linear function f(x) = 3x - 2 and

a table of sample values.
! Notice that, whenever x increases by 0.1,

the value of f(x) increases by 0.3.

! So, f (x) increases three times as fast as x.

LINEAR MODELS



!Thus, the slope of the graph y = 3x - 2,

namely 3, can be interpreted as the rate

of change of y with respect to x.

LINEAR MODELS



As dry air moves upward, it expands

and cools.

! If the ground temperature is 20°C and the

temperature at a height of 1 km is 10°C,

express the temperature T (in °C) as a function

of the height h (in kilometers), assuming that

a linear model is appropriate.

! Draw the graph of the function in part (a).
What does the slope represent?

! What is the temperature at a height of 2.5 km?

LINEAR MODELS Example 1



As we are assuming that T is a linear

function of h, we can write T = mh + b.

! We are given that T = 20 when h = 0,

so 20 = m . 0 + b = b.

! In other words, the y-intercept is b = 20.

! We are also given that T = 10 when h = 1,

so 10 = m . 1 + 20

! Thus, the slope of the line is m = 10 – 20 = -10.

!  The required linear function is T = -10h + 20.

LINEAR MODELS Example 1 a



The slope is m = -10°C/km.

This represents the rate of change of

temperature with respect to  height.

LINEAR MODELS Example 1 b



At a height of h = 2.5 km,

the temperature is:

T = -10(2.5) + 20 = -5°C.

LINEAR MODELS Example 1 c



If there is no physical law or principle to

help us formulate a model, we construct

an empirical model.
! This is based entirely on collected data.

! We seek a curve that ‘fits’ the data in the sense

that it captures the basic trend of the data points.

EMPIRICAL MODEL



The table lists the average carbon dioxide

(CO2) level in the atmosphere, measured in

parts per million at Mauna Loa Observatory

from 1980 to 2002.

Use the data to find a model for the CO2 level.

LINEAR MODELS Example 2



We use the data in the table to make

the scatter plot shown in the figure.
! In the plot, t represents time (in years) and C

represents the CO2 level (in parts per million, ppm).

LINEAR MODELS Example 2



Notice that the data points appear

to lie close to a straight line.
!So, in this case, it’s natural to choose

a linear model.

Example 2LINEAR MODELS



However, there are many possible

lines that approximate these data points.
!So, which one should we use?

LINEAR MODELS Example 2



One possibility is the line that

passes through the first and last

data points.

LINEAR MODELS Example 2



The slope of this line is:

372.9 338.7 34.2
1.5545

2002 1980 22

!
= "

!

LINEAR MODELS Example 2



The equation of the line is:

C - 338.7 = 1.5545(t -1980)

or C = 1.5545t - 2739.21

LINEAR MODELS E.g. 2—Equation 1



This equation gives one possible linear

model for the CO2 level.

It is graphed in the figure.

LINEAR MODELS Example 2



Although our model fits the data

reasonably well, it gives values higher

than most of the actual CO2 levels.

LINEAR MODELS Example 2



A better linear model is obtained

by a procedure from statistics called

linear regression.

LINEAR MODELS Example 2



If we use a graphing calculator, we enter

the data from the table into the data editor

and choose the linear regression command.
! With Maple, we use the fit[leastsquare] command

in the stats package.

! With Mathematica, we use the Fit command.

LINEAR MODELS Example 2



The machine gives the slope and y-intercept

of the regression line as:

m = 1.55192 b  = -2734.55

So, our least squares model for the level

CO2 is: 

C = 1.55192t - 2734.55

LINEAR MODELS E. g. 2—Equation 2



In the figure, we graph the

regression line as well as the

data points.

LINEAR MODELS Example 2



Comparing with the earlier figure,

we see that it gives a better fit than

our previous linear model.

LINEAR MODELS Example 2



Use the linear model given by

Equation 2 to estimate the average

CO2 level for 1987 and to predict

the level for 2010.
! According to this model, when will the CO2 level

exceed 400 parts per million?

LINEAR MODELS Example 3



Using Equation 2 with t = 1987, we estimate

that the average CO2 level in 1987 was:

C(1987) = (1.55192)(1987) - 2734.55    349.12

! This is an example of interpolation—as we have

estimated a value between observed values.

! In fact, the Mauna Loa Observatory reported that

the average CO2 level in 1987 was 348.93 ppm.

! So, our estimate is quite accurate.

!

LINEAR MODELS Example 3



With t = 2010, we get:

C(2010) = (1.55192)(2010) - 2734.55    384.81

So, we predict that the average CO2 level in

2010 will be 384.8 ppm.

! This is an example of extrapolation—as we have

predicted a value outside the region of observations.

! Thus, we are far less certain about the accuracy

of our prediction.

!

LINEAR MODELS Example 3



Using Equation 2, we see that the CO2 level

exceeds 400 ppm when:

Solving this inequality, we get:

! Thus, we predict that the CO2 level

will exceed 400 ppm by 2019.

! This prediction is somewhat risky—as it involves

a time quite remote from our observations.

1.55192 2734.55 400t ! >

3134.55
2019.79

1.55192
t > !

LINEAR MODELS Example 3



A function P is called a polynomial if

P(x) = anx
n + an-1x

n-1 + … + a2x
2 + a1x + a0

where n is a nonnegative integer and

the numbers a0, a1, a2, …, an are constants

called the coefficients of the polynomial.

POLYNOMIALS



The domain of any polynomial is                .

If the leading coefficient          , then

the degree of the polynomial is n.
! For example, the function

is a polynomial of degree 6.

6 4 32
( ) 2 2

5
P x x x x= ! + +

0
n
a !

POLYNOMIALS

  ! = (!",")



A polynomial of degree 1 is of the form

P(x) = mx + b

So, it is a linear function.

DEGREE 1



A polynomial of degree 2 is of the form

P(x) = ax2 + bx + c

It is called a quadratic function.

DEGREE 2



Its graph is always a parabola obtained

by shifting the parabola y = x2.
! The parabola opens upward if a > 0 and

downward if a < 0.

DEGREE 2



A polynomial of degree 3 is of the form

It is called a cubic function.

3 2( ) ( 0)P x ax bx cx d a= + + + !

DEGREE 3



The figures show the graphs of

polynomials of degrees 4 and 5.

DEGREES 4 AND 5



We will see later why these three graphs

have these shapes.

POLYNOMIALS



Polynomials are commonly used to

model various quantities that occur

in the natural and social sciences.
! For instance, in Section 3.7, we will explain

why economists often use a polynomial P(x)

to represent the cost of producing x units of

a commodity.

! In the following example, we use a quadratic

function to model the fall of a ball.

POLYNOMIALS



A ball is dropped from the upper observation

deck of the CN Tower—450 m above the

ground—and its height h above the ground is

recorded at 1-second intervals.
! Find a model to fit the data

and use the model to predict

the time at which the ball

hits the ground.

POLYNOMIALS Example 4



We draw a scatter plot of the data.

We observe that a linear model is

inappropriate.

POLYNOMIALS Example 4



However, it looks as if the data points

might lie on a parabola.
!So, we try a quadratic model instead.

POLYNOMIALS Example 4



Using a graphing calculator or computer

algebra system (which uses the least squares

method), we obtain the following quadratic

model:

h = 449.36 + 0.96t - 4.90t2

POLYNOMIALS E. g. 4—Equation 3



We plot the graph of Equation 3 together

with the data points.

We see that the quadratic model gives

a very good fit.

POLYNOMIALS Example 4



The ball hits the ground when h = 0.

So, we solve the quadratic equation

-4.90t2 + 0.96t + 449.36 = 0

POLYNOMIALS Example 4



The quadratic formula gives

! The positive root is

! So, we predict the ball

will hit the ground after

about 9.7 seconds.

20.96 (0.96) 4( 4.90)(449.36)

2( 4.90)
t

! ± ! !
=

!

9.67t !

POLYNOMIALS Example 4



A function of the form f(x) = xa,

where a is constant, is called a

power function.

!We consider several cases.

POWER FUNCTIONS



a = n, where n is a positive integer

! The graphs of f(x) = xn  for n = 1, 2, 3, 4, and 5

are shown.

! These are polynomials with only one term.

CASE 1



!We already know the shape of the graphs

of y = x (a line through the origin with

slope 1) and y = x2 (a parabola).

CASE 1



The general shape of the graph

of f(x) = xn depends on whether n

is even or odd.

CASE 1



If n is even, then f(x) = xn is an even

function, and its graph is similar to

the parabola y = x2.

CASE 1



If n is odd, then f(x) = xn is an odd

function, and its graph is similar to

that of y = x3.

CASE 1



However, notice from the figure that, as n

increases, the graph of y = xn becomes flatter

near 0 and steeper when           .
! If x is small, then x2 is smaller, x3 is even smaller,

x4 is smaller still, and so on.

| | 1x !

CASE 1



a = 1/n, where n is a positive integer

! The function                             is a root function.

! For n = 2, it is the square root function                ,

whose domain is          and whose graph is

the upper half of the parabola x = y2.

! For other even values

of n, the graph of

    is similar to

that of    .

1/( ) n nf x x x= =

( )f x x=

[0, )!

CASE 2

y x=

ny x=



For n = 3, we have the cube root function

      whose domain is    (recall that every

real number has a cube root) and whose

graph is shown.
! The graph of             for n odd (n > 3) is similar

to that of            .

3( )f x x=

ny x=
3y x=

CASE 2

 !



a =  -1

! The graph of the reciprocal function f(x) = x-1  = 1/x

is shown.

! Its graph has the equation y = 1/x, or xy = 1.

! It is a hyperbola with

the coordinate axes as

its asymptotes.

CASE 3



This function arises in physics and chemistry

in connection with Boyle’s Law, which states

that, when the temperature is constant, the

volume V of a gas is inversely proportional

to the pressure P.

where C is a constant.

C
V

P
=

CASE 3



So, the graph of V as a function of P

has the same general shape as the right

half of the previous figure.

CASE 3



A rational function f is a ratio of two

polynomials

where P and Q are polynomials.

! The domain consists of all values of x

such that         .

( )
( )

( )

P x
f x

Q x
=

( ) 0Q x !

RATIONAL FUNCTIONS



A simple example of a rational function

is the function f(x) = 1/x, whose domain

is    .

! This is the reciprocal function

graphed in the figure.

{ }| 0x x !

RATIONAL FUNCTIONS



The function

is a rational function with domain

   .

! Its graph is shown here.

4 2

2

2 1
( )

4

x x
f x

x

! +
=

!

{ }| 2x x ! ±

RATIONAL FUNCTIONS



A function f is called an algebraic function

if it can be constructed using algebraic

operations—such as addition, subtraction,

multiplication, division, and taking roots—

starting with polynomials.

ALGEBRAIC FUNCTIONS



Any rational function is automatically

an algebraic function.

Here are two more examples:

2( ) 1f x x= +

ALGEBRAIC FUNCTIONS

4 2

316
( ) ( 2) 1
x x

g x x x
x x

!
+ ! +

+



When we sketch algebraic functions

in Chapter 4, we will see that their graphs

can assume a variety of shapes.
! The figure illustrates some of the possibilities.

ALGEBRAIC FUNCTIONS



An example of an algebraic function

occurs in the theory of relativity.

! The mass of a particle with velocity v is

where m0 is the rest mass of the particle and

c = 3.0 x 105 km/s is the speed of light in a vacuum.

0

2

2

( )

1

m
m f v

v

c

= =

!

ALGEBRAIC FUNCTIONS



In calculus, the convention is that radian

measure is always used (except when

otherwise indicated).
! For example, when we use the function f(x) = sin x,

it is understood that sin x means the sine of the

angle whose radian measure is x.

TRIGONOMETRIC FUNCTIONS



!Thus, the graphs of the sine

and cosine functions are as shown

in the figure.

TRIGONOMETRIC FUNCTIONS



Notice that, for both the sine and cosine

functions, the domain is             and the range

is the closed interval [-1, 1].
! Thus, for all values of x, we have:

! In terms of absolute values, it is:

( , )!" "

1 sin 1 1 cos 1x x! " " ! " "

| sin | 1 | cos | 1x x! !

TRIGONOMETRIC FUNCTIONS



Also, the zeros of the sine function

occur at the integer multiples of    .

That is, sin x = 0 when x = n   ,

n an integer.

!

TRIGONOMETRIC FUNCTIONS

!



An important property of the sine and

cosine functions is that they are periodic

functions and have a period     .
! This means that, for all values of x,

2!

sin( 2 ) sin cos( 2 ) cosx x x x! !+ = + =

TRIGONOMETRIC FUNCTIONS



The periodic nature of these functions

makes them suitable for modeling

repetitive phenomena such as tides,

vibrating springs, and sound waves.

TRIGONOMETRIC FUNCTIONS



For instance, in Example 4 in Section 1.3,

we will see that a reasonable model for

the number of hours of daylight in Philadelphia

t days after January 1 is given by the function:

2
( ) 12 2.8sin ( 80)

365
L t t

!" #
= + $% &' (

TRIGONOMETRIC FUNCTIONS



The tangent function is related to

the sine and cosine functions by

the equation

Its graph is shown.

sin
tan

cos

x
x

x
=

TRIGONOMETRIC FUNCTIONS



The tangent function is undefined whenever

cos x = 0, that is, when

Its  range is            .

! Notice that the tangent

function has period    :

         for all x.

TRIGONOMETRIC FUNCTIONS

3
, ,
2 2

x
! !

= ± ± " " " "

( , )!" "

tan( ) tanx x!+ =

!



The remaining three trigonometric

functions—cosecant, secant, and

cotangent—are the reciprocals of

the sine, cosine, and tangent functions.

TRIGONOMETRIC FUNCTIONS



The exponential functions are the functions

of the form                , where the base a

is a positive constant.
! The graphs of y = 2x  and y = (0.5)x are shown.

! In both cases, the domain is               and the range

is          .

( ) xf x a=

( , )!" "

(0, )!

EXPONENTIAL FUNCTIONS



We will study exponential functions

in detail in Section 1.5.
!We will see that they are useful for modeling many

natural phenomena—such as population growth

(if a > 1) and radioactive decay (if a < 1).

EXPONENTIAL FUNCTIONS



The logarithmic functions                   ,

where the base a is a positive constant,

are the inverse functions of the

exponential functions.

!We will study them in Section 1.6.

( ) logaf x x=

LOGARITHMIC FUNCTIONS



The figure shows the graphs of four

logarithmic functions with various bases.
! In each case, the domain is          , the range is              ,

and the function increases slowly when x > 1.
(0, )! ( , )!" "

LOGARITHMIC FUNCTIONS



Transcendental functions are

those that are not algebraic.
! The set of transcendental functions includes the

trigonometric, inverse trigonometric, exponential, and

logarithmic functions.

!However, it also includes a vast number of other

functions that have never been named.

! In Chapter 11, we will study transcendental functions

that are defined as sums of infinite series.

TRANSCENDENTAL FUNCTIONS



Classify the following functions as

one of the types of functions that

we have discussed.

a.

b.

c.

d.

( ) 5xf x =

TRANSCENDENTAL FUNCTIONS Example 5

5( )g x x=

1
( )

1

x
h x

x

+
=

!
4( ) 1 5u t t t+ ! +



f(x) = 5x  is an exponential

function.

!The x is the exponent.

TRANSCENDENTAL FUNCTIONS Example 5 a



g(x) = x5 is a power function.

!The x is the base.

We could also consider it to be

a polynomial of degree 5.

TRANSCENDENTAL FUNCTIONS Example 5 b



is

an algebraic function.

Example 5 cTRANSCENDENTAL FUNCTIONS

1
( )

1

x
h x

x

+
=

!



u(t) = 1 – t + 5t4   is

a polynomial of degree 4.

Example 5 dTRANSCENDENTAL FUNCTIONS


