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In this chapter, we explore some of the

applications of the definite integral by using it

to compute areas between curves, volumes of

solids, and the work done by a varying force.

!The common theme is the following general

method—which is similar to the one used to find areas

under curves.
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We break up a quantity Q into a large

number of small parts.

!Next, we approximate each small part by a quantity

of the form                  and thus approximate Q by

a Riemann sum.

!Then, we take the limit and express Q as an integral.

!Finally, we evaluate the integral using the Fundamental

Theorem of Calculus or the Midpoint Rule.
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6.1

Areas Between Curves

  In this section we learn about:

Using integrals to find areas of regions that lie

between the graphs of two functions.
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Consider the region S that lies between two

curves y = f(x) and y = g(x) and between

the vertical lines x = a and x = b.

!Here, f and g are

continuous functions

and f(x) ! g(x) for all

x in [a, b].
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As we did for areas under curves in Section

5.1, we divide S into n strips of equal width

and approximate the i th strip by a rectangle

with base "x and height                         .( *) ( *)i if x g x!
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We could also take all the sample points

to be right endpoints—in which case
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The Riemann sum

is therefore an approximation to what we

intuitively think of as the area of S.

!This approximation appears to become

better and better as n _ #.
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Thus, we define the area A of the region S

as the limiting value of the sum of the areas

of these approximating rectangles.

!The limit here is the definite integral of f - g.
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Thus, we have the following formula for area:

The area A of the region bounded by

the curves y = f(x), y = g(x), and the lines

x = a, x = b, where f and g are continuous

and                    for all x in [a, b], is:( ) ( )f x g x!
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Notice that, in the special case where

g(x) = 0, S is the region under the graph of f

and our general definition of area reduces to

Definition 2 in Section 5.1
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Where both f and g are positive, you can see

from the figure why Definition 2 is true:
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Find the area of the region bounded

above by y = ex, bounded below by

y = x, and bounded on the sides by

x = 0 and x = 1.
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As shown here, the upper boundary

curve is y = ex and the lower boundary

curve is y = x.
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So, we use the area formula with y = ex,

g(x) = x, a = 0, and b = 1:
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Here, we drew a typical approximating

rectangle with width "x as a reminder of

the procedure by which the area is defined

in Definition 1.
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In general, when we set up an integral for

an area, it’s helpful to sketch the region to

identify the top curve yT , the bottom curve yB,

and a typical

approximating

rectangle.
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Then, the area of a typical rectangle is

(yT  - yB) "x and the equation

summarizes the procedure of adding (in a

limiting sense) the areas of all the typical

rectangles.
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Notice that, in the first figure, the left-hand

boundary reduces to a point whereas, in

the other figure, the right-hand boundary

reduces to a point.
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In the next example, both the side

boundaries reduce to a point.

!So, the first step is to find a and b.
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Find the area of the region

enclosed by the parabolas y = x2

and y = 2x - x2.
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First, we find the points of intersection of

the parabolas by solving their equations

simultaneously.

!This gives x2  = 2x - x2, or 2x2 - 2x = 0.

!Thus, 2x(x - 1) = 0, so x = 0 or 1.

!The points of intersection are (0, 0) and (1, 1).
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From the figure, we see that the top and

bottom boundaries are:

yT = 2x – x2  and yB = x2
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The area of a typical rectangle is

(yT – yB) "x = (2x – x2 – x2) "x

and the region lies between x = 0 and x = 1.

!So, the total area is:
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Sometimes, it is difficult—or even

impossible—to find the points of intersection

of two curves exactly.

!As shown in the following example, we can

use a graphing calculator or computer to find

approximate values for the intersection points

and then proceed as before.
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Find the approximate area of the region

bounded by the curves

and

2
1y x x= +

4
.y x x= !
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If we were to try to find the exact intersection

points, we would have to solve the equation

!It looks like a very difficult equation to solve exactly.

!In fact, it’s impossible.
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Instead, we use a graphing device to

draw the graphs of the two curves.
!One intersection point is the origin. The other is x $ 1.18

!If greater accuracy

is required,

we could use

Newton’s method

or a rootfinder—if

available on our

graphing device.
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Thus, an approximation to the area

between the curves is:

!To integrate the first term, we use

the substitution u = x2 + 1.

!Then, du = 2x dx, and when x = 1.18,

we have u $ 2.39
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Therefore,

( )
2.39 1.18
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The figure shows velocity curves for two cars,

A and B, that start side by side and move

along the same road.

What does the area

between the curves

represent?

!Use the Midpoint Rule

to estimate it.
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The area under the velocity curve A

represents the distance traveled by car A

during the first 16 seconds.

!Similarly, the area

under curve B is

the distance traveled

by car B during that

time period.

Example 4AREAS BETWEEN CURVES



So, the area between these curves—which is

the difference of the areas under the

curves—is the distance between the cars

after 16 seconds.
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We read the velocities

from the graph and

convert them to feet per

second
5280

1mi /h ft/s
3600
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We use the Midpoint Rule with n = 4

intervals, so that "t = 4.

!The midpoints of the intervals are

           and            .
1 2
2, 6,t t= =
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We estimate the distance between the

cars after 16 seconds as follows:
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To find the area between the curves y = f(x)

and y = g(x), where f(x) ! g(x) for some values

of x but g(x) ! f(x) for other values of x, split

the given region S into several regions S1,

S2, . . . with areas

A1, A2, . . .
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Then, we define the area of the region S

to be the sum of the areas of the smaller

regions S1, S2, . . . , that is, A = A1 + A2 +. . . 
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Since

we have the following expression for A.
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The area between the curves y = f(x) and

y = g(x) and between x = a and x = b is:

!However, when evaluating the integral, we must still

split it into integrals corresponding to A1, A2, . . . .
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Find the area of the region bounded

by the curves y = sin x, y = cos x,

x = 0, and x = !/2.
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The points of intersection occur when

sin x = cos x, that is, when x = ! / 4

(since 0 % x % ! / 2).
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Observe that cos x ! sin x when

0 % x % ! / 4 but sin x ! cos x when

! / 4 % x % ! / 2.
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So, the required area is:

( ) ( )

[ ] [ ]

2

1 2
0

4 2

0 4

4 2

0 4

cos sin

cos sin sin cos

sin cos cos sin

1 1 1 1
0 1 0 1

2 2 2 2

2 2 2

A x x dx A A

x x dx x x dx

x x x x

!

! !

!

! !

!

= " = +

= " + "

= + + " "

# $ # $
= + " " + " " + +% & % &
' ( ' (

= "

)
) )

Example 5AREAS BETWEEN CURVES



We could have saved some work by noticing

that the region is symmetric about x = ! / 4.

So, ( )
4

1
0

2 2 cos sinA A x x dx
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Example 5AREAS BETWEEN CURVES



Some regions are best treated by

regarding x as a function of y.

!If a region is bounded by curves with equations x = f(y),

x = g(y), y = c, and

y = d, where f and g

are continuous and

f(y) ! g(y) for c % y % d,

then its area is:
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If we write xR for the right boundary and xL

for the left boundary, we have:

!Here, a typical

approximating rectangle

has dimensions xR - xL

and "y.
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Find the area enclosed by

the line y = x - 1 and the parabola

y2 = 2x + 6.
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By solving the two equations, we find that the

points of intersection are (-1, -2) and (5, 4).

!We solve the equation of the parabola for x.

!From the figure, we notice

that the left and right

boundary curves are:
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We must integrate between

the appropriate y-values, y = -2

and y = 4.
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Thus, ( )
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In the example, we could have found

the area by integrating with respect to x

instead of y.

However, the calculation is much more

involved.
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It would have meant splitting the region

in two and computing the areas labeled

A1 and A2.

!The method used in

the Example is much

easier.
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